Correction of morphofunctional disorders in experimental preeclampsy by combined use of trimetazidine and purified micronized flavonoid fraction as well as their combinations with methylampsy

Cover Page

Cite item

Abstract

The aim of the experiment was to determine the effectiveness of the combined use of trimetazidine and a purified micronized flavonoid fraction, as well as their combinations with methyldopa, in comparison with monotherapy with the same drugs in the correction of morphofunctional disorders arising in the conditions of experimental preeclampsia.

An integrated/multimethodology approach is the most effective way of treatment for preeclampsia. Therefore, an urgent task of modern pharmacology is to study the effectiveness of new drugs when used in combinations, as well as the drugs included in the standards for treatment.

Materials and methods. The study was carried out at the Research Institute of Pharmacology of Living Systems of Belgorod State National Research University. The experiment was performed on 200 female Wistar rats, weighing 250–300 g, in which an ADMA-like model of preeclampsia had been reproduced. To assess the degree of correction of emerging morphological and functional disorders, the following parameters were involved: blood pressure, a coefficient of endothelial dysfunction, microcirculation in the placenta, proteinuria, fluid contents in the greater omentum, morphometric indicators of placental tissues and fetal height and weight parameters.

Results. The combined use of trimetazidine (Preductal® MB) 6 mg/kg and a purified micronized flavonoid fraction (Detralex®) 260 mg/kg, as well as their combination with methyldopa (Dopegit®) 86 mg/kg, leads to a more pronounced decrease in the blood pressure, compared with a decrease in the coefficient of endothelial dysfunction by 2.22, 2.19 and 1.94 times, respectively, in relation to “untreated” animals. There was an increase in microcirculation indices in the placenta by 2.35, 2.21 and 2.03 times, respectively. In addition, there was an improvement in morphological parameters in the placenta and fetuses.

Conclusion. The results of the study showed a greater effectiveness of the combined use of the studied drugs in experimental preeclampsia compared to their monotherapy. This indicates the prospects for the use of trimetazidine and purified micronized flavonoid fraction in the complex therapy for preeclampsia and the need for further research in this direction.

About the authors

Oksana E. Antsiferova

Belgorod State National Research University

Author for correspondence.
Email: AnciferovaO@ya.ru
ORCID iD: 0000-0002-9456-9569

postgraduate student of the Department of Pharmacology and Clinical Pharmacology

Russian Federation, 85, Pobeda St., Belgorod, 308015

Maria P. Teleschenko

Belgorod State National Research University

Email: marijastreltsowa@yandex.ru
ORCID iD: 0000-0003-0849-4351

postgraduate student of the Department of Pharmacology and Clinical Pharmacology

Russian Federation, 85, Pobeda St., Belgorod, 308015

Yulia M. Tsuverkalova

Belgorod State National Research University

Email: cvd404@mail.ru
ORCID iD: 0000-0001-8489-247X

post-graduate student of the Department of Pharmacology and Clinical Pharmacology

Russian Federation, 85, Pobeda St., Belgorod, 308015

Mikhail V. Pokrovsky

Belgorod State National Research University

Email: mpokrovsky@yandex.ru
ORCID iD: 0000-0002-2761-6249

Doctor of Sciences (Medicine), Professor, Professor of the Department of Pharmacology and Clinical Pharmacology, the Head of the Research Institute of Pharmacology of Living Systems

Russian Federation, 85, Pobeda St., Belgorod, 308015

Vladimir V. Gureev

Belgorod State National Research University

Email: produmen@yandex.ru
ORCID iD: 0000-0003-1433-1225

Doctor of Sciences (Medicine), Associate Professor, Professor of the Department of Pharmacology and Clinical Pharmacology

Russian Federation, 85, Pobeda St., Belgorod, 308015

Maria A. Zatolokina

Kursk State Medical University

Email: marika1212@mail.ru
ORCID iD: 0000-0002-9553-1597

Doctor of Sciences (Medicine), Professor, Professor of the Department of Histology, Cytology, Embryology

Russian Federation, 3, Karl Marx St., Kursk, 305041

Anastasia V. Gureeva

Kursk State Medical University

Email: nastasyi.207@gmail.com
ORCID iD: 0000-0003-1719-7316

4th year student of Medical Department

Russian Federation, 3, Karl Marx St., Kursk, 305041

References

  1. Hutcheon JA, Lisonkova S, Joseph KS. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol. 2011;25(4):391–403. doi: 10.1016/j.bpobgyn.2011.01.006.
  2. Say L, Chou D, Gemmill A, Tunçalp Ö, Moller AB, Daniels J, Gülmezoglu AM, Temmerman M, Alkema L. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6):e323-33. doi: 10.1016/S2214–109X(14)70227-X.
  3. [Klinicheskie rekomendacii (protokol lecheniya). Gipertenzivnye rasstrojstva vo vremya beremennosti, v rodah i poslerodovom periode. Preeklampsiya. Eklampsiya]. Moskva, 2016:72. Russian
  4. Ghulmiyyah L, Sibai B. Maternal mortality from preeclampsia/eclampsia. Semin Perinatol. 2012;36(1):56–9. doi: 10.1053/j.semperi.2011.09.011.
  5. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–44. doi: 10.1016/S0140-6736(10)60279-6.
  6. Young B, Hacker MR, Rana S. Physicians’ knowledge of future vascular disease in women with preeclampsia. Hypertens Pregnancy. 2012;31(1):50–8. doi: 10.3109/10641955.2010.544955.
  7. Medved’, V.I., Duda E.M. Preeklampsiya v klinike ekstragenital’noj patologii. Pochki. 2013; 3(5):36–38. Russian.
  8. Brewster JA, Orsi NM, Gopichandran N, Ekbote UV, Cadogan E, Walker JJ. Host inflammatory response profiling in preeclampsia using an in vitro whole blood stimulation model. Hypertens Pregnancy. 2008;27(1):1–16. doi: 10.1080/10641950701826067.
  9. Ray A, Ray S. Epidural therapy for the treatment of severe pre-eclampsia in non labouring women. Cochrane Database Syst Rev. 2017 Nov 28;11(11):CD009540. doi: 10.1002/14651858.CD009540.pub2.
  10. Babic I, Ferraro ZM, Garbedian K, Oulette A, Ball CG, Moretti F, Gruslin A. Intraplacental villous artery resistance indices and identification of placenta-mediated diseases. J Perinatol. 2015;35(10):793–8. doi: 10.1038/jp.2015.85.
  11. Vayssière C, Sentilhes L, Ego A, Bernard C, Cambourieu D, Flamant C, Gascoin G, Gaudineau A, Grangé G, Houfflin-Debarge V, Langer B, Malan V, Marcorelles P, Nizard J, Perrotin F, Salomon L, Senat MV, Serry A, Tessier V, Truffert P, Tsatsaris V, Arnaud C, Carbonne B. Fetal growth restriction and intra-uterine growth restriction: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians. Eur J Obstet Gynecol Reprod Biol. 2015;193:10–8. doi: 10.1016/j.ejogrb.2015.06.021.
  12. Hovhaeva PA, Tyutyunnik NV, Krasnyj A.M, Sergunina OA, Timofeeva LA, Kan NE, Tyutyunnik VL. [Oksidativnyj stress i ekspressiya genov fermentov antioksidantnoj zashchity v placente pri preeklampsii]. Farmateka. 2016; 3(316):74-76. Russian
  13. Krasnyj AM, Kan NE, Tyutyunnik VL, Hovhaeva PA, Volgina NE, Sergunina OA, Tyutyunnik NV, Bednyagin LA. [Okislitel’nyj stress pri preeklampsii i pri normal’noj beremennosti]. Obstetrics and Gynecology. 2016; 5: 90-95. doi: 10.18565/aig.2016.5.90-94. Russian
  14. Sidorova IS, Nikitina NA, Unanyan AL, Rzaeva AA, Kinyakin VV. [Patogeneticheskoe obosnovanie differencirovannogo podhoda k vedeniyu beremennyh s arterial’noj gipertenziej i preeklampsiej]. Obstetrics and Gynecology. 2013;2: 35-40. Russian
  15. Sidorova I.S., Nikitina N.A., Unanian A.L., Rzaeva A.A., Kiniakin V.V. Evaluation of the efficiency of preeclampsia therapy in relation to the severity of gestational endothelial dysfunction. Rossijskij vestnik akushera-ginekologa. 2013; 13(3):4-8.
  16. Shamshirsaz AA, Paidas M, Krikun G. Preeclampsia, hypoxia, thrombosis, and inflammation. J Pregnancy. 2012;2012:374047. doi: 10.1155/2012/374047.
  17. Zou Y, Zuo Q, Huang S, Yu X, Jiang Z, Zou S, Fan M, Sun L. Resveratrol inhibits trophoblast apoptosis through oxidative stress in preeclampsia-model rats. Molecules. 2014;19(12):20570–9. doi: 10.3390/molecules191220570.
  18. Stupakova EG, Lazareva GA, Gureev VV. Correction of morphofunctional disturbances arising when modelling Preeclampsia with resveratrol and nicorandil. Research Results in Pharmacology. 2018;4(1):59–71. doi: 10.3897/rrpharmacology.4.25528
  19. Gureev VV, Alekhin SA, Dolzhikov AA, Mostovoy AC. Correction of experimental adma-like pre-eclampsy. Kurskij nauchno-prakticheskij vestnik CHelovek i ego zdorov’e. 2012;1:14–19. Russian
  20. Yoshikawa K, Umekawa T, Maki S, Kubo M, Nii M, Tanaka K, Tanaka H, Osato K, Kamimoto Y, Kondo E, Ikemura K, Okuda M, Katayama K, Miyoshi T, Hosoda H, Ma N, Yoshida T, Ikeda T. Tadalafil Improves L-NG-Nitroarginine Methyl Ester-Induced Preeclampsia With Fetal Growth Restriction-Like Symptoms in Pregnant Mice. Am J Hypertens. 2017;31(1):89–96. doi: 10.1093/ajh/hpx130.
  21. Pokrovskij MV, Gureev VV, Dolzhikov A, Polyanskaya OS, Mostovoj AS, Alekhin SA. Korrekciya eksperimental’nogo gestoza tadalafilom Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Medicina. Farmaciya. 2012;18(10-2 (129)):146–151. Russian
  22. Antsiferova O.E., Yurakova A.V., Lokteva T.I., Severinova O.V., Gureev V.V Comprehensive assessment of the correction of morphofunctional disorders in adma preeclampsia by trimetazidine. VESTNIK OF Smolensk state medical academy. 2019;18(1). 103–108. Russian
  23. Antsiferova OE, Gureev VV, Gureeva AV, et al. Comprehensive assessment of using micronised purified flavonoid fraction in the correction of disorders associated with ADMA-like preeclampsia in experiment. Research Results in Biomedicine. 2020;6(1):78–93. doi: 10.18413/2658-6533-2020-6-1-0-7. Russian
  24. Antsiferova OE, Yurakova AV, Lukyanova YS, Gureev VV, Korokin MV, Gureeva AV, Pokrovskaya TG, Gudyrev OS. Correction of asymmetric dimethylarginine-like pre-eclampsia in rats by micronized purified flavonoids fraction Drug Invention Today. 2019;12(11):2709–12.
  25. Stupakova EG, Lazareva GA, Gureev VV, Dolzhikova IN, Zhilinkova LA, Gureeva AV L-NAME-induced Preeclampsia: correction of functional disorders of the hemostasis system with Resveratrol and Nicorandil. Research Results in Pharmacology. 2019;5(2):1–12. doi: 10.3897/rrpharmacology.5.35316
  26. Korokin M, Gureev V, Gudyrev O, Golubev I, Korokina L, Peresypkina A, Pokrovskaia T, Lazareva G, Soldatov V, Zatolokina M, Pobeda A, Avdeeva E, Beskhmelnitsyna E, Denisyuk T, Avdeeva N, Bushueva O, Pokrovskii M. Erythropoietin Mimetic Peptide (pHBSP) Corrects Endothelial Dysfunction in a Rat Model of Preeclampsia. Int J Mol Sci. 2020 Sep 15;21(18):E6759. doi: 10.3390/ijms21186759. PMID: 32942669.
  27. Gureev VV, Pokrovskii MV, Korokin MV, Gudyrev OS, Philippova OV, Dolzhikov AA, Lazareva GA. Correction of ADMA-induced preeclampsia with use of tetrahydrobiopterin and selective inhibitor of arginase II ZB49-0010. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2015;6(5):1538–1541.
  28. Korokin M, Pokrovskiy M, Gudyrev O, Korokina L, Pokrovskaia T, Lazarev A, Philippenko N, Gureev V. Pharmacological correction of endothelial dysfunction in rats using e-NOS cofactors. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2015;6:1548–1552.
  29. Lokteva TI, Rozhkov S, Gureev VV, Gureeva AV, Zatolokina MA, Avdeeva EV, Zhilinkova LA, Prohoda EE, Yarceva EO. Correction of morphofunctional disorders of the cardiovascular system with asialized erythropoietin and arginase II selective inhibitors KUD 974 and KUD 259 in experimental preeclampsia. Research Results in Pharmacology. 2020;6(1):29-40. doi: 10.3897/rrpharmacology.6.50851
  30. Yalamati P, Bhongir AV, Karra M, Beedu SR. Comparative Analysis of Urinary Total Proteins by Bicinchoninic Acid and Pyrogallol Red Molybdate Methods. J Clin Diagn Res. 2015;9(8):BC01–4. doi: 10.7860/JCDR/2015/13543.6313.
  31. Tyurenkov IN, Perfilova VN, Ivanova LB, Karamysheva VI. Vliyanie proizvodnyh GAMK na antitromboticheskuyu funkciyu endoteliya i sostoyanie mikrocirkulyacii u zhivotnyh s eksperimental’nym gestozom. Regionarnoe krovoobrashchenie i mikrocirkulyaciya. 2012;11(2):61–65. doi: 10.24884/1682-6655-2012-11-2-61-65. Russian
  32. Mironova AN et al. Rukovodstvo po provedeniyu doklinicheskih issledovanij lekarstvennyh sredstv. Part 1. Moscow: Grif i K; 2012. Russian.
  33. Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000;86(5):580–8. doi: 10.1161/01.res.86.5.580. PMID: 10720420.
  34. Dalal JJ, Mishra S. Modulation of myocardial energetics: An important category of agents in the multimodal treatment of coronary artery disease and heart failure. Indian Heart J. 2017;69(3):393–401. doi: 10.1016/j.ihj.2017.04.001.
  35. Belardinelli R, Solenghi M, Volpe L, Purcaro A. Trimetazidine improves endothelial dysfunction in chronic heart failure: an antioxidant effect. Eur Heart J. 2007;28(9):1102–8. doi: 10.1093/eurheartj/ehm071.
  36. Wei J, Xu H, Shi L, Tong J, Zhang J. Trimetazidine protects cardiomyocytes against hypoxia-induced injury through ameliorates calcium homeostasis. Chem Biol Interact. 2015;236:47–56. doi: 10.1016/j.cbi.2015.04.022.
  37. Steggall A, Mordi IR, Lang CC. Targeting Metabolic Modulation and Mitochondrial Dysfunction in the Treatment of Heart Failure. Diseases. 2017 May 10;5(2):14. doi: 10.3390/diseases5020014.
  38. Shi W, Shangguan W, Zhang Y, Li C, Li G. Effects of trimetazidine on mitochondrial respiratory function, biosynthesis, and fission/fusion in rats with acute myocardial ischemia. Anatol J Cardiol. 2017;18(3):175–181. doi: 10.14744/AnatolJCardiol.2017.7771.
  39. Mahfoudh-Boussaid A, Hadj Ayed Tka K, Zaouali MA, Roselló-Catafau J, Ben Abdennebi H. Effects of trimetazidine on the Akt/eNOS signaling pathway and oxidative stress in an in vivo rat model of renal ischemia-reperfusion. Ren Fail. 2014;36(9):1436–42. doi: 10.3109/0886022X.2014.949765.
  40. Wu Q, Qi B, Liu Y, Cheng B, Liu L, Li Y, Wang Q. Mechanisms underlying protective effects of trimetazidine on endothelial progenitor cells biological functions against H2O2-induced injury: involvement of antioxidation and Akt/eNOS signaling pathways. Eur J Pharmacol. 20135;707(1–3):87–94. doi: 10.1016/j.ejphar.2013.03.027.
  41. Danikiewicz A, Szkodziński J, Hudzik B, Korzonek-Szlacheta I, Gąsior M, Zubelewicz-Szkodzińska B. Effects of trimetazidine on interleukin-2 and interleukin-8 concentrations in patients with coronary artery disease. Can J Physiol Pharmacol. 2017;95(6):759–762. doi: 10.1139/cjpp-2016-0424.
  42. Szkodzinski J, Danikiewicz A, Hudzik B, Szewczyk M, Gąsior M, Zubelewicz-Szkodzinska B. Effect of trimetazidine on serum interleukin-6 and C-reactive protein concentrations in patients with stable coronary artery disease. J Biol Regul Homeost Agents. 2015;29(1):63–72.
  43. Yoon JW, Cho BJ, Park HS, Kang SM, Choi SH, Jang HC, Shin H, Lee MJ, Kim YB, Park KS, Lim S. Differential effects of trimetazidine on vascular smooth muscle cell and endothelial cell in response to carotid artery balloon injury in diabetic rats. Int J Cardiol. 2013;167(1):126–33. doi: 10.1016/j.ijcard.2011.12.061.
  44. Zhang L, Ding WY, Wang ZH, Tang MX, Wang F, Li Y, Zhong M, Zhang Y, Zhang W. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. J Transl Med. 2016;14(1):109. doi: 10.1186/s12967-016-0849-1.
  45. Statsenko ME, Fabritskaya SV, Ryndina UA. Influence of therapy with trimetazidine on the state of the main vessels and microcirculation in patients with CHF and DM type 2. The results of the original study. Meditsinskiy sovet: Medical Council. 2018;(5):65–69. doi: 10.21518/2079-701X-2018-5-65-69. Russian
  46. Milinković I, Rosano G, Lopatin Y, Seferović PM. The Role of Ivabradine and Trimetazidine in the New ESC HF Guidelines. Card Fail Rev. 2016 Nov;2(2):123–129. doi: 10.15420/cfr.2016:13:1.
  47. Trukhan DI, Mazurov AL, Davydov EL. Myocardial cytoprotector trimetazidine MB-preparat, increases the effectiveness of treatment of chronic heart failure and coronary heart disease. Meditsinskiy sovet: Medical Council. 2017;(7):75–83. doi: 10.21518/2079-701X-2017-7-75-83. Russian
  48. Patel K, Gadewar M, Tahilyani V, Patel DK. A review on pharmacological and analytical aspects of diosmetin: a concise report. Chin J Integr Med. 2013;19(10):792–800. doi: 10.1007/s11655-013-1595-3.
  49. Wei D, Ci X, Chu X, Wei M, Hua S, Deng X. Hesperidin suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model. Inflammation. 2012;35(1):114–21. doi: 10.1007/s10753-011-9295-7.
  50. Maneesai P, Bunbupha S, Potue P, Berkban T, Kukongviriyapan U, Kukongviriyapan V, Prachaney P, Pakdeechote P. Hesperidin Prevents Nitric Oxide Deficiency-Induced Cardiovascular Remodeling in Rats via Suppressing TGF-β1 and MMPs Protein Expression. Nutrients. 2018;10(10):1549. doi: 10.3390/nu10101549.
  51. Shaban NZ, Ahmed Zahran AM, El-Rashidy FH, Abdo Kodous AS. Protective role of hesperidin against γ-radiation-induced oxidative stress and apoptosis in rat testis. J Biol Res (Thessalon). 2017;24:5. doi: 10.1186/s40709-017-0059-x. PMID: 28265554; PMCID: PMC5333452.
  52. Ali TM, Abo-Salem OM, El Esawy BH, El Askary A. The Potential Protective Effects of Diosmin on Streptozotocin-Induced Diabetic Cardiomyopathy in Rats. Am J Med Sci. 2020 Jan;359(1):32–41. doi: 10.1016/j.amjms.2019.10.005.
  53. Yarmolinsky L, Budovsky A, Yarmolinsky L, Khalfin B, Glukhman V, Ben-Shabat S. Effect of Bioactive Phytochemicals from Phlomis viscosa Poiret on Wound Healing. Plants (Basel). 2019;8(12):609. doi: 10.3390/plants8120609.
  54. Lin JT, Chang YY, Chen YC, Shen BY, Yang DJ. Molecular mechanisms of the effects of the ethanolic extract of Muntingia calabura Linn. fruit on lipopolysaccharide-induced pro-inflammatory mediators in macrophages. Food Funct. 2017;8(3):1245–1253. doi: 10.1039/c6fo01735e.
  55. Ağır MS, Eraslan G. The effect of diosmin against liver damage caused by cadmium in rats. J Food Biochem. 2019;43(9):e12966. doi: 10.1111/jfbc.12966.
  56. Elhelaly AE, AlBasher G, Alfarraj S, Almeer R, Bahbah EI, Fouda MMA, Bungău SG, Aleya L, Abdel-Daim MM. Protective effects of hesperidin and diosmin against acrylamide-induced liver, kidney, and brain oxidative damage in rats. Environ Sci Pollut Res Int. 2019;26(34):35151-35162. doi: 10.1007/s11356-019-06660-3.
  57. Berkoz M. Diosmin suppresses the proinflammatory mediators in lipopolysaccharide-induced RAW264.7 macrophages via NF-κB and MAPKs signal pathways. Gen Physiol Biophys. 2019 Jul;38(4):315–324. doi: 10.4149/gpb_2019010. Epub 2019 Jun 26. PMID: 31241043.
  58. Kalinin RE, Suchkov IA, Kamaev AA, Zvyagina VI, Krylov AA. Éndoteliotropnye éffekty venotoniziruiushchikh preparatov pri lechenii bol’nykh s varikoznoĭ bolezn’iu [Endotheliotropic effects of venotonic drugs in treatment of patients with varicose veins]. Angiol Sosud Khir. 2018;24(4):72–74. Russian. PMID: 30531772.
  59. Gurfinkel’ II, Sasonko ML, Talov NA. Korrektsiia parametrov mikrotsirkuliatsii krovi i funktsii éndoteliia pri khronicheskoĭ venoznoĭ nedostatochnosti nizhnikh konechnosteĭ [Correction of blood microcirculation parameters and endothelial function in chronic venous insufficiency of lower limbs]. Angiol Sosud Khir. 2017;23(2):89–95. Russian.
  60. Zudin AM, Gritsenko AG, Hadzhishvili IT. Vozdeĭstvie diosmina i gesperidina na kapilliarnyĭ krovotok verkhnikh konechnosteĭ u patsientov s vtorichnym sindromom Reĭno [The effects of diosmin and hesperidin on capillary blood flow of upper limbs in patients with secondary Raynaud’s syndrome]. Khirurgiia (Mosk). 2017;(5):60–66. doi: 10.17116/hirurgia2017560-66. Russian.
  61. Paredes MD, Romecín P, Atucha NM, O’Valle F, Castillo J, Ortiz MC, García-Estañ J. Moderate Effect of Flavonoids on Vascular and Renal Function in Spontaneously Hypertensive Rats. Nutrients. 2018;10(8):1107. doi: 10.3390/nu10081107.
  62. Paredes MD, Romecín P, Atucha NM, O’Valle F, Castillo J, Ortiz MC, García-Estañ J. Beneficial Effects of Different Flavonoids on Vascular and Renal Function in L-NAME Hypertensive Rats. Nutrients. 2018;10(4):484. doi: 10.3390/nu10040484.
  63. Liu X, Zhang X, Zhang J, Kang N, Zhang N, Wang H, Xue J, Yu J, Yang Y, Cui H, Cui L, Wang L, Wang X. Diosmin protects against cerebral ischemia/reperfusion injury through activating JAK2/STAT3 signal pathway in mice. Neuroscience. 2014;268:318–27. doi: 10.1016/j.neuroscience.2014.03.032.
  64. Kilicoglu SS, Tanrikulu Y, Kismet K, Devrim E, Erel S, Tanrikulu CS, Aydogan A, Tasova V, Sabuncuoglu MZ, Kilicoglu B. The effect of diosmin on pancreatic injury induced by hepatic ischemia reperfusion in rats. Bratisl Lek Listy. 2013;114(3):119–24. doi: 10.4149/bll_2013_026.
  65. Mastantuono T, Battiloro L, Sabatino L, Chiurazzi M, Di Maro M, Muscariello E, Colantuoni A, Lapi D. Effects of Citrus Flavonoids Against Microvascular Damage Induced by Hypoperfusion and Reperfusion in Rat Pial Circulation. Microcirculation. 2015;22(5):378–90. doi: 10.1111/micc.12207.
  66. Mansilha A, Sousa J. Pathophysiological Mechanisms of Chronic Venous Disease and Implications for Venoactive Drug Therapy. Int J Mol Sci. 2018;19(6):1669. doi: 10.3390/ijms19061669.
  67. G, Vincenza C, De Blasis E. Effectiveness and safety of a mixture of diosmin, coumarin and arbutin (Linfadren®) in addition to conventional treatment in the management of patients with post-trauma/surgery persistent hand edema: a randomized controlled trial. Clin Rehabil. 2019;33(5):904–912. doi: 10.1177/0269215519829797.
  68. Cacchio A, Prencipe R, Bertone M, De Benedictis L, Taglieri L, D’Elia E, Centoletti C, Di Carlo G. Effectiveness and safety of a product containing diosmin, coumarin, and arbutin (Linfadren®) in addition to complex decongestive therapy on management of breast cancer-related lymphedema. Support Care Cancer. 2019 ;27(4):1471–1480. doi: 10.1007/s00520-018-4514-5.
  69. Feldo M, Wójciak-Kosior M, Sowa I, Kocki J, Bogucki J, Zubilewicz T, Kęsik J, Bogucka-Kocka A. Effect of Diosmin Administration in Patients with Chronic Venous Disorders on Selected Factors Affecting Angiogenesis. Molecules. 2019;24(18):3316. doi: 10.3390/molecules24183316.
  70. Drogovoz SM, SHtrygol’ SYu, SHCHekina EG, Matveeva EV, Voloshchuk NI, Trzhecinskij SD, Zamorskij II, Oleshchuk AM, Podpletnyaya EA, SHtroblya AL, Ivancik LB, Drogovoz VV. Farmakologiya v pomoshch’ vrachu, provizoru i studentu. Har’kov; 2018.
  71. Xu B, Charlton F, Makris A, Hennessy A. Antihypertensive drugs methyldopa, labetalol, hydralazine, and clonidine improve trophoblast interaction with endothelial cellular networks in vitro. J Hypertens. 2014;32(5):1075–83; discussion 1083. doi: 10.1097/HJH.0000000000000134.
  72. Xu B, Bobek G, Makris A, Hennessy A. Antihypertensive methyldopa, labetalol, hydralazine, and clonidine reversed tumour necrosis factor-α inhibited endothelial nitric oxide synthase expression in endothelial-trophoblast cellular networks. Clin Exp Pharmacol Physiol. 2017;44(3):421–427. doi: 10.1111/1440-1681.12712.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – The effect of the Preductal® MB and Detralex® combination, as well as their combination with Dopegit®, on proteinuria and fluid content in the tissue of the greater omentum in ADMA-like preeclampsiaNote: # – at p <0.05 in comparison with intact pregnant rats; * – at p <0.05 in comparison with the group of pregnant animals treated with L-NAME; y – at p <0.05 in comparison with both monotherapy options.

Download (279KB)
3. Figure 2 – The effect of the Preductal® МВ and Detralex® combination, as well as their combination with Dopegit®, on the fetal and maternal size parts of the placenta, in ADMA-like preeclampsiaNote: # – at p <0.05 in comparison with intact pregnant rats; * – at p <0.05 in comparison with the group of pregnant animals treated with L-NAME; y – at p <0.05 in comparison with both monotherapy options

Download (140KB)

Copyright (c) 2020 Antsiferova O.E., Teleshchenko M.P., Tsuverkalova Y.M., Pokrovsky M.V., Gureev V.V., Zatolokina M.A., Gureeva A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies