Antibacterial and immunotropic properties of isoliquiritigenin in generalized staphylococcal infection in mice

Cover Page

Cite item

Abstract

The article is devoted to the study of the effects of isoliquiritigenin in generalized bacterial infections.

The aim is to study antibacterial and immunotropic mechanisms and effects of isoliquiritigenin in generalized staphylococcal infections in a mouse model.

Materials and methods. To assess the survival rate of Balb/C mice, a generalized infection model caused by Staphylococcus aureus J49 ATCC 25923 with Kaplan-Meier curves was used. The degree of bacteremia during the development of infection was determined by the method of sector crops. The minimum inhibitory concentration of isoliquiritigenin against Staphylococcus aureus J49 ATCC 25923 was determined by serial dilutions methods. To study an antibiofilm activity, the MTT test and atomic force microscopy were used. Immunotropic effects were studied by assessing peptone-induced migration of phagocytes into the abdominal cavity, proliferation of mitogen-activated lymphocytes in the MTT test and their cytokine secretion using the MILLIPLEX MAP kit on a Magpix multiplex analyzer.

Results. It has been established that a preliminary intraperitoneal administration of isoliquiritigenin (30 mg/kg) increases the survival rate of Balb/C mice in case of generalized staphylococcal infections. Isoliquiritigenin has antibacterial (MOC = 64 μg/ml) and antibiofilm (4–32 μg/ml) activities against S. aureus J49 ATCC 25923, does not inhibit the migration of phagocytes in the abdominal cavity, dose-dependently inhibits the proliferation and secretion of cytokines by mitogen-activated T-lymphocytes and modulates the production of cytokines (IL-2, IL-12p70, IFNg, TNFα, IL-6, IL-22, IL-23, IL-17A, IL-17F, IL-17E/IL-25, GM-CSF, MIP – 3a/CCL20, IL-10) by the cells of inguinal lymph nodes and splenocytes in the early stages of generalized staphylococcal infections.

Conclusion. A preliminary administration of isoliquiritigenin increases the survival rate of mice with generalized staphylococcal infections, which may be associated with both antimicrobial (antistaphylococcal, antibiofilm) and immunotropic mechanisms. The obtained data on the pharmacodynamics of isoliquiritigenin deserve attention from the point of view of the prospects of the new drugs creation that reduce mortality in staphylococcal sepsis.

About the authors

Elena A. Solyonova

Chuvash State University named after I.N. Ulyanov

Author for correspondence.
Email: elensoul@mail.ru
ORCID iD: 0000-0001-6104-0864

Junior Researcher, Department of Pharmacology, Clinical Pharmacology and Biochemistry

Russian Federation, 15, Moskovsky prospect, Cheboksary, Chuvash Republic, 428015

Svetlana I. Pavlova

Chuvash State University named after I.N. Ulyanov

Email: flavonoid@yandex.ru
ORCID iD: 0000-0001-9976-7866

Doctor of Sciences (Medicine), the Head of the Department of Pharmacology, Clinical Pharmacology and Biochemistry

Russian Federation, 15, Moskovsky prospect, Cheboksary, Chuvash Republic, 428015

References

  1. Ani C, Farshidpanah S, Stewart AB, Nguyen HB. Variations in organism-specific severe sepsis mortality in the United States: 1999–2008. Critical Care Medicine. 2015;3(1):65–77. doi: 10.1097/CCM.0000000000000555.
  2. Narita K, Hu DL, Mori F, Wakabayashi K, Iwakura Y, Nakane A. Role of Interleukin-17A in Cell-Mediated Protection against Staphylococcus aureus Infection in Mice Immunized with the Fibrinogen-Binding Domain of Clumping Factor A. Infection and Immunity. 2010;78(10):4234–4242. doi: 10.1128/IAI.00447-10.
  3. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R. Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Medicine. 2017; 43(3):304–377. doi: 10.1007/s00134-017-4683-6.
  4. Kumar S, Gupta E, Kaushik S, Kumar Srivastava V, Mehta SK, Jyoti A. Evaluation of Oxidative Stress and Antioxidant Status: Correlation With the Severity of Sepsis. Scandinavian Journal of Immunology. 2018;87(4):e12653. doi: 10.1111/sji.12653.
  5. Fraser JD. Clarifying the Mechanism of Superantigen Toxicity. PLoS Biology. 2011;9(9):e1001145. doi: 10.1371/journal.pbio.1001145.
  6. Qu Q, Wang J, Cui W. In vitro activity and in vivo efficacy of Isoliquiritigenin against Staphylococcus xylosus ATCC 700404 by IGPD target. PLoS One. 2019;14(12):e0226260. doi: 10.1371/journal.pone.0226260.
  7. Park SJ, Song HY, Youn HS. Suppression of the TRIF-dependent signaling pathway of toll-like receptors by isoliquiritigenin in RAW264.7 macrophages. Molecules and Cells. 2009;28(4):365–368. doi: 10.1007/s10059-009-0130-z.
  8. Chen X, Cai X, Le R, Zhang M, Gu X, Shen F, Hong G, Chen Z. Isoliquiritigenin Protects Against Sepsis-Induced Lung and Liver Injury by Reducing Inflammatory Responses // Biochemical and Biophysical Research Communications. 2018;496(2):245–252. doi: 10.1016/j.bbrc.2017.11.159.
  9. Pavlova SI Immunosupressivnye i protivoopuholevye farmakodinamicheskie jeffekty flavonoidov kornej solodki [dissertacija na soiskanie uchenoj stepeni doktora medicinskih nauk]. Rossijskij nacional’nyj issledovatel’skij medicinskij universitet imeni N.I. Pirogova. Moskva. 2012.
  10. Pavlova SI, Albegova DZ, Dmitrieva NV, Dibirova GO, Kozlov IG. Licorice root flavonoids effect the functions of mouse and human activated T-lymphocytes. Russian Journal of immunology. 2011;5(14):62–68.
  11. Pavlova SI, Albegova DZ, Kjagova AA, Kozlov IG. Mechanisms of immunosuppressive action of licorice root flavonoids in contact sensitivity in mice: inhibition of T lymphocyte effector function mediated by non-effector cells. Medical Immunology. 2010;12(6):503–510. doi: 10.15789/1563-0625-2010-6-503-510.
  12. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biology. 2010;8(6):e1000412. doi: 10.1371/journal.pbio.1000412.
  13. CLSI. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, Approved Guideline. 2004. URL: https://www.semanticscholar.org/paper/Method-for-antifungal-disk-diffusionsusceptibility-Rex-Clinical/65de3bf5c2b026c9e3b0995780e7fa790e7c0295 (дата обращения 06.08.2020).
  14. Wang C, Chang T, Yang H, Cui M. Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Control. 2015;47:231–236. doi: 10.1016/j.foodcont.2014.06.034.
  15. Grela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria – A review. Acta Histochemica. 120;4:303–311. doi: 10.1016/j.acthis.2018.03.007.
  16. Sharma-Chawla N, Stegemann-Koniszewski S, Christen H. In vivo Neutralization of Proinflammatory Cytokines During Secondary Streptococcus pneumoniae Infection Post Influenza A Virus Infection. Frontiers in immunology. 2019;10:1864. doi: 10.3389/fimmu.2019.01864.
  17. Miyazaki S, Ishikawa F, Fujikawa T, Nagata S, Yamaguchi K. Intraperitoneal Injection of Lipopolysaccharide Induces Dynamic Migration of Gr-1high Polymorphonuclear Neutrophils in the Murine Abdominal Cavity. Clinical Diagn Lab Immunol. 2004;11(3):452–457. doi: 10.1128/CDLI.11.3.452-457.2004.
  18. Thomsen IP, Liu JY. Targeting Fundamental Pathways to Disrupt Staphylococcus Aureus Survival: Clinical Implications of Recent Discoveries. JCI Insight. 2018;3(5):e98216. doi: 10.1172/jci.insight.98216.
  19. Magrone T, Jirillo E. Sepsis: From Historical Aspects to Novel Vistas. Pathogenic and Therapeutic Considerations. Endocrine, Metabolic & Immune Disorders – Drug Targets. 2019;19(4):90–502. doi: 10.2174/1871530319666181129112708.
  20. Chen P, Stanojcic M, Jeschke MG. Differences Between Murine and Human Sepsis. Surgical Clinics of North America. 2014;94(6):1135-1149. doi: 10.1016/j.suc.2014.08.00.
  21. Chesney PJ, Bergdoll MS, Davis JP, Vergeront JM. The disease spectrum, epidemiology, and etiology of toxic-shock syndrome. Annual Review of Microbiology. 1984;38:315–338. doi: 10.1146/annurev.mi.38.100184.001531.
  22. Zou P, Ji HM, Zhao JW, Ding X, Zhen Z, Zhang X, Nie X.-Q., Xue L.-X. Protective effect of isoliquiritigenin against cerebral injury in septic mice via attenuation of NF-κB. Inflammopharmacology. 2019;27(4):809–816. doi: 10.1007/s10787-018-0503-z.
  23. Kumar S, Sharma A, Madan B, Singhal V, Ghosh B. Isoliquiritigenin inhibits IkappaB kinase activity and ROS generation to block TNF-alpha induced expression of cell adhesion molecules on human endothelial cells. Biochemical Pharmacology. 2007;73(10):1602–1612. doi: 10.1016/j.bcp.2007.01.015.
  24. Qiao H, Zhang X, Wang T, Liang L, Chang W, Xia H. Pharmacokinetics, Biodistribution and Bioavailability of Isoliquiritigenin After Intravenous and Oral Administration. Pharmaceutical Biology. 2014;52(2):228–236. doi: 10.3109/13880209.2013.832334.
  25. Hiltunen AK, Savijoki K, Nyman TA, Miettinen I, Ihalainen P, Peltonen J, Fallarero A. Structural and Functional Dynamics of Staphylococcus aureus Biofilms and Biofilm Matrix Proteins on Different Clinical Materials. Microorganisms. 2019;7(12):584. doi: 10.3390/microorganisms7120584.
  26. McCarthy H, Rudkin JK, Black NS, Gallagher L, O’Neill E, O’Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Fronties in Cellular and Infection Microbiology. 2015;5(1). doi: 10.3389/fcimb.2015.00001.
  27. Goldmann O, Medina E. Staphylococcus Aureus Strategies to Evade the Host Acquired Immune Response. International Journal of Medical Microbiology. 2017;308(6):625–630. doi: 10.1016/j.ijmm.2017.09.013.
  28. Cortes-Puch I, Hicks CW, Sun J, Solomon SB, Eichacker PQ, Sweeney DA, Nieman LK, Whitley EM, Behrend EN, Natanson C, Danner RL. Hypothalamic-pituitary-adrenal axis in lethal canine Staphylococcus aureus pneumonia. Am J Physiol Endocrinol Metab. 2014;307(11):E994–E1008. doi: 10.1152/ajpendo.00345.2014.
  29. Kojima H, Takeda Y, Muromoto R, Takahashi M, Hirao T, Takeuchi S. Jetten A.M., Matsuda T. Isoflavones Enhance interleukin-17 Gene Expression via Retinoic Acid Receptor-Related Orphan Receptors α and γ. Toxicology. 2015;329:32–39. doi: 10.1016/j.tox.2015.01.007.
  30. Pavlova SI, Albegova DZ, Vorob’eva JuS, Laptev OS, Kozlov IG. Flavonoids as Potential Immunosuppressive Agents Affecting Intracellular Signaling Pathways (A Review). Pharmaceutical Chemistry Journal. 2015;49(10):3–10. doi: 10.30906/0023-1134-2015-49-10-3-10.
  31. Wang L, Yang R, Yuan B, Liu Y, Liu C. Antiviral and Antimicrobial Activities of Licorice, a Widely-Used Chinese Herb. Acta Pharmaceutica Sinica B. 2015;5(4):310–315. doi: 10.1016/j.apsb.2015.05.005.
  32. Llewelyn M, Cohen J. Superantigens: microbial agents that corrupt immunity. The Lancet Infectious Diseases. 2002;2(3):156–162. doi: 10.1016/s1473-3099(02) 00222-0.
  33. Sadowska B, Więckowska-Szakiel M, Paszkiewicz M, Różalska B. The Immunomodulatory Activity of Staphylococcus Aureus Products Derived From Biofilm and Planktonic Cultures. Archivum Immunologiae et Therapiae Experimentalis (Warsz). 2013;61(5):413–420. doi: 10.1007/s00005-013-0240-3.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – Survival of Balb/C mice (males) infected with S. aureus J49 ATCC 25923

Download (25KB)
3. Figure 2 – Effect of ISL on the growth of S. aureus J49 ATCC 25923

Download (122KB)
4. Figure 3 – Effect of ISL on biofilm formation of S. aureus J49 ATCC 25923

Download (87KB)
5. Figure 4 – Dynamics of splenocytes (A) and inguinal lymph node cells (B) in the model of Balb/C mice staphylococcal infection

Download (16KB)
6. Figure 5 – Effect of preliminary ISL administration on the levels of cytokines (groups Th-1 and IL-10) produced by the cells of the inguinal lymph nodes of Balb/C mice infected with S. aureus J49 ATCC 25923 (5×108 CFUs/mouse) (* p<0.05)

Download (61KB)
7. Figure 6 – Effect of preliminary ISL administration on the levels of cytokines (Th-17 group) produced by the cells of the inguinal lymph nodes of Balb/C mice infected with S. aureus J49 ATCC 25923 (5×108 CFUs/mouse) (* p<0.05)

Download (87KB)
8. Figure 7 – Effect of preliminary ISL administration on cytokine levels (groups Th-1 and IL-10) produced by splenocytes of Balb/C mice infected with S. aureus J49 ATCC 25923 (5×108 CFUs/mouse, intraperitoneal) (* p<0.05)

Download (57KB)
9. Figure 8 – Effect of preliminary ISL administration on cytokine levels (group Th-17), produced by splenocytes of Balb/C mice infected with S. aureus J49 ATCC 25923 (5×108 CFUs/mouse, intraperitoneally) (*p<0.05)

Download (86KB)

Copyright (c) 2020 Solyonova E.A., Pavlova S.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies