EFFECT OF PUMPKIN (CUCURBITA PEPO L.) AND MARIGOLD (TAGETES PATULA L.) EXTRACTS ON HIPPOCAMPAL MITOCHONDRIA FUNCTIONAL ACTIVITY WITHIN CONDITIONS OF EXPERIMENTAL ACUTE BRAIN HYPOMETABOLISM


Cite item

Full Text

Abstract

The aim of the study is to evaluate the effect of pumpkin (Cucurbita pepo L.) and marigold extracts (Tagetes patula L.) on the hippocampal mitochondria functional activity within the conditions of experimental acute brain hypometabolism.Materials and methods. The work was performed on 50 male Wistar rats, which reproduced an acute brain hypometabolic state by administration of a 3M sodium azide solution in hippocampus (n = 40 and n = 10 - a group of sham-operated animals). The test extracts and the reference drug - EGb 761 - were prophylactically administered at the dose of 100 mg/kg per os for 10 days. 24 hours after the last administration, sodium azide was injected, the brain was taken, the hippocampus was isolated to obtain a supernatant and determine the parameters of mitochondrial respiration, the intensity of anaerobic processes, the concentration of the apoptosis-inducing factor, endonuclease G, and β-amyloid.Results. The carried out study established that the prophylactic administration of pumpkin and marigold extracts contributed to the restoration of a mitochondrial function and a decrease in the intensity of anaerobic processes. In the group of the rats treated with pumpkin and marigold extracts, an increase of ATP concentration in the hippocampal supernatant by 65.7% (p<0.002) was observed; it was 66.2% (p><0.002) relative to the animals deprived of pharmacological support. ,When the rats were treated with pumpkin and marigold extracts, a decrease in the concentration of apoptosis-inducing factor (by 33% (p><0.002) and 38.3% (p><0.002), respectively) and endonuclease G (by 3.6 times (p><0.002) and 4.4 times (p><0.002), respectively) was also noted. The administration of pumpkin and marigold extracts reduced the amyloid β-peptide concentration in the rats’ hippocampus by 54.4% (p><0.0002) and 54.4% (p><0.0002), respectively. The test-extracts had an equivalent therapeutic efficacy with the reference drug. Conclusion On the basis of the obtained data, it is possible to suggest the prospect of a further study of pumpkin and marigold extracts as the drugs of a targeted correction of cerebral hypometabolism. Keywords: plant extracts, hypometabolism, hippocampus, mitochondria >< 0.002) was observed; it was 66.2% (p<0.002) relative to the animals deprived of pharmacological support. ,When the rats were treated with pumpkin and marigold extracts, a decrease in the concentration of apoptosis-inducing factor (by 33% (p><0.002) and 38.3% (p><0.002), respectively) and endonuclease G (by 3.6 times (p><0.002) and 4.4 times (p><0.002), respectively) was also noted. The adm>< 0.002) relative to the animals deprived of pharmacological support. ,When the rats were treated with pumpkin and marigold extracts, a decrease in the concentration of apoptosis-inducing factor (by 33% (p<0.002) and 38.3% (p><0.002), respectively) and endonuclease G (by 3.6 times (p><0.002) and 4.4 times (p><0.002), respectively) was also noted. The administration of pumpki>< 0.002) and 38.3% (p<0.002), respectively) and endonuclease G (by 3.6 times (p><0.002) and 4.4 times (p><0.002), respectively) was also noted. The administration of pumpkin and marigold extracts reduced the amyloid β-peptide concentration in the rats’ hippocampus by 54.4% (p><0.0002) and 54.4% (p><0.0002), respectively. The test-extracts had an equivalent therapeutic efficacy with >< 0.002), respectively) and endonuclease G (by 3.6 times (p<0.002) and 4.4 times (p><0.002), respectively) was also noted. The administration of pumpkin and marigold extracts reduced the amyloid β-peptide concentration in the rats’ hippocampus by 54.4% (p><0.0002< 0.002) and 4.4 times (p<0.002), respectively) was also noted. The administration of pumpkin and marigold extracts reduced the amyloid β-peptide concentration in the rats’ hippocampus by 54.4% (p><0.0002) and 54.4% (p><0.0002), respectively. The te>< 0.002), respectively) was also noted. The administration of pumpkin and marigold extracts reduced the amyloid β-peptide concentration in the rats’ hippocampus by 54.4% (p<0.0002) and 54.4% (p><0.0002), respectively. The test-extracts had an equiva>< 0.0002) and 54.4% (p<0.0002), respectively. The test-extracts had an equivalent therapeutic efficacy with the reference drug. Conclusion On the basis of the obtained d>< 0.0002), respectively. The test-extracts had an equivalent therapeutic efficacy with the reference drug.Conclusion On the basis of the obtained data, it is possible to suggest the prospect of a further study of pumpkin and marigold extracts as the drugs of a targeted correction of cerebral hypometabolism.

About the authors

A. V. Voronkov

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University

Email: prohor77@mail.ru

D. I. Pozdnyakov

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University

Email: pozdniackow.dmitry@yandex.ru

S. L. Adzhiakhmetova

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University

Email: similla503@mail.ru

N. M. Chervonnaya

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University

Email: nadezhda.chervonnaya@yandex.ru

K. A. Miroshnichenko

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University

Email: K220436@yandex.ru

A. V. Sosnovskaya

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University

Email: 88misi88@yandex.ru

E. I. Chereshkova

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University

Email: elizaveta.shereshkova@yandex.ru

References

  1. Gao C., Chang P., Yang L. Neuroprotective effects of hydrogen sulfide on sodium azide-induced oxidative stress in PC12 cells. // Int J Mol Med. - 2018. - т. 41, №1. - С. 242-250. doi: 10.3892/ijmm.2017.3227
  2. Takahashi R.H., Nagao T., Gouras G.K. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease // Pathol Int. - 2017. - №67. - С. 185-193. doi: 10.1111/pin.12520.
  3. Chen G.F., Xu T.H., Yan Y. Amyloid beta: structure, biology and structure-based therapeutic development // Acta Pharmacol Sin. - 2017. - т. 38, №9. - С. 1205-1235. doi: 10.1038/aps.2017.28
  4. Lesné S.E., Sherman M.A., Grant M. Brain amyloid-β oligomers in ageing and Alzheimer’s disease // Brain. - 2013. - т. 136, ч. 5. - С. 1383-1398. doi: 10.1093/brain/awt062
  5. Mattson M.P. Pathways towards and away from Alzheimer’s disease // Nature. - 2004. - т. 430, №7000. - С. 631-639. doi: 10.1038/nature02621.
  6. Del Prete D., Suski J.M., Oulès B. Localization and Processing of the Amyloid-β Protein Precursor in Mitochondria-Associated Membranes // J Alzheimers Dis. - 2017. - т. 55. №4. - С. 1549-1570. doi: 10.3233/JAD-160953
  7. Lustbader J.W., Cirilli M., Lin C., Xu H.W., Takuma K., Wang N., Caspersen C., Chen X., Pollak S., Chaney M., et al. Abad directly links a beta to mitochondrial toxicity in Alzheimer’s disease // Science. - 2004. - № 304. - С. 448-452. doi: 10.1126/science.1091230.
  8. Chen X., Yan S.D. Mitochondrial abeta: A potential cause of metabolic dysfunction in Alzheimer’s disease // IUBMB Life. - 2006. - №58. - С. 686-694. doi: 10.1080/15216540601047767.
  9. De Strooper B., Iwatsubo T., Wolfe M.S. Presenilins and γ-secretase: structure, function, and role in Alzheimer Disease // Cold Spring Harb Perspect Med. - 2012. - т. 2, №1. - С. a006304. doi: 10.1101/cshperspect.a006304
  10. Zhao Y., Zhang Y., Pan F. The effects of EGb761 on lipopolysaccharide-induced depressive-like behaviour in C57BL/6J mice // Cent Eur J Immunol. - 2015. - т. 40, №1. - С. 11-17. doi: 10.5114/ceji.2015.49427
  11. Гордон, Р.Я., Капралова, М.В., Годухин, О.В., Архипов, В.И. Особенности нарушений памяти у крыс после повреждения поля СА3 дорсального гиппокампа каиновой кислотой // Бюллетень экспериментальной биологии и медицины. - 2013. - т. 155, №6. - С. 771-775.
  12. Brouillet E., Hyman B.T., Jenkins B.G., Henshaw D.R., Schulz J.B., Sodhi P., Rosen B.R., Beal M.F.Systemic or local administration of azide produces striatal lesions by an energy impairmentinduced excitotoxic mechanism // Experimental Neurology. - 1994. - №129. - С. 175-182.
  13. Воронков А.В., Поздняков Д.И., Нигарян С.А., Хури Е.И., Мирошниченко К.А., Сосновская А.В., Олохова Е.А. Оценка респирометрической функции митохондрий в условиях патологий различного генеза // Фармация и фармакология. - 2019. - т. 7, №1. - С. 20-31. doi.10.19163/2307-9266-2019-7-1-20-31
  14. Riha P.D., Rojas J.C., Colorado R.A., Gonzalez-Lima F. Animal model of posterior cingulate cortex hypometabolism implicated in amnestic MCI and AD // Neurobiol Learn Mem. - 2008. - т. 90, №1. - С. 112-124. doi: 10.1016/j.nlm.2008.01.011
  15. Scheltens N.ME, van der Weijden K., Adriaanse S.M. Hypometabolism of the posterior cingulate cortex is not restricted to Alzheimer’s disease // Neuroimage Clin. - 2018. - №.19. - С. 625-632. doi:10.1016/j. nicl.2018.05.024
  16. Nicholson R.M., Kusne Y., Nowak L.A., LaFerla F.M., Reiman E.M., Valla J. Regional cerebral glucose uptake in the 3xTG model of Alzheimer’s disease highlights common regional vulnerability across AD mouse models // Brain Res. - 2010. - №1347. - С. 179-185. doi:10.1016/j. brainres.2010.05.084
  17. Chou J.L., Shenoy D.V., Thomas N., Choudhary P.K., Laferla F.M, Goodman SR.Early dysregulation of the mitochondrial proteome in a mouse model of Alzheimer’s diseaseм // Journal of Proteomics-2011. - т. 74, №4. -С. 466-479. doi: 10.1016 / j.jprot.2010.12.012.
  18. Li Z., Chen X., Lu W. Anti-Oxidative Stress Activity Is Essential for Amanita caesarea Mediated Neuroprotection on Glutamate-Induced Apoptotic HT22 Cells and an Alzheimer’s Disease Mouse Model. // Int J Mol Sci. - 2017. - т. 18, №8. - С. 1623. doi: 10.3390/ijms18081623
  19. Obulesu, M., Jhansi Lakshmi M. Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues // Neurochemical research. - 2014. - т. 39, №12. - С. 2301-2312.
  20. Chételat G., Ossenkoppele R., Villemagne V.L. Atrophy, hypometabolism and clinical trajectories in patients with amyloid-negative Alzheimer’s disease // Brain. - 2016. №139, ч. 9. С. 2528-2539. doi: 10.1093/brain/aww159
  21. Sperling R., Mormino E., Johnson K. The evolution of preclinical Alzheimer’s disease: implications for prevention trials // Neuron. - 2014. - т. 84, №3. - С. 608-622. doi: 10.1016/j.neuron.2014.10.038
  22. Villain N., Desgranges B., Viader F. Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s disease // J Neurosci. - 2008. - т. 28, №24. - С. 6174-6181. doi: 10.1523/JNEUROSCI.1392-08.2008
  23. Cummings J., Aisen P.S., DuBois B. Drug development in Alzheimer’s disease: the path to 2025 // Alzheimers Res Ther. - 2016. - № 8. - С. 39-51. doi: 10.1186/s13195-016-0207-9.
  24. Henley D.B., Sundell K.L., Sethuraman G., Dowsett S.A., May P.C. Safety profile of semagacestat, a gammsecretase inhibitor: IDENTITY trial findings // Curr Med Res Opin. - 2014. - № 10. - С. 2021-2032. doi: 10.1185/03007995.2014.939167.
  25. Frenguelli B.G. The Purine Salvage Pathway and the Restoration of Cerebral ATP: Implications for Brain Slice Physiology and Brain Injury // Neurochem Res. - 2019. т. 44, №3. - С.661-675. doi: 10.1007/s11064-017-2386-6
  26. Farina B., Di Sorbo G., Chambery A.Structural and biochemical insights of CypA and AIF interaction // Sci Rep. - 2017. - т. 7, №1. - С. 1138. doi: 10.1038/s41598-017-01337-8
  27. Masters C.L., Selkoe D.J. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease // Cold Spring Harb Perspect Med. - 2012. - т. 2, №6. - С. a006262. doi: 10.1101/cshperspect.a006262

Copyright (c) 2019 Voronkov A.V., Pozdnyakov D.I., Adzhiakhmetova S.L., Chervonnaya N.M., Miroshnichenko K.A., Sosnovskaya A.V., Chereshkova E.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies