USING QUANTUM-CHEMICAL PARAMETERS FOR PREDICTING ANTI-RADICAL (НО∙) ACTIVITY OF RELATED STRUCTURES CONTAINING A CINNAMIC MOLD FRAGMENT. I. DERIVATIVES OF CINNAMIC ACID, CHALCON AND FLAVANON


Cite item

Full Text

Abstract

45 compounds uniting 3 groups of derivatives of cinnamic acid, chalcone and flavanone, have been studied. Each of them includes 15 substances. The analyzed compounds contain a common structural fragment, which is a cinnamic acid residue (cinnamoyl fragment).The aim is to study the quantum-chemical parameters of the listed groups of the compounds in order to predict possible ways of their interaction with the most aggressive and dangerous of the active oxygen species (ROS) – a hydroxyl radical.Materials and methods. For the analyzed structures, the Mulliken charges (a.u.), bond numbers (Nμ), unsaturation index (IUA), and electron density values on all 9-carbon atoms of the cinnamoyl fragment have been determined. The calculations have been carried out on a workstation with an Intel Xeon E5-1620 3.5 GHz processor, 20 GB of RAM. The semi-empirical method PM7 was used (WinMopac 2016 program). The ORCA 4.1 program was used to calculate the energies of homolytic cleavage of the O – H bond.Results. The analysis of Mulliken charges (a.u.), bonded numbers (Nμ), unsaturation indices (IUA), and electron density revealed a number of regularities on the basis of which it can be concluded, that taking into account the nature of the substituent, the most probable for addition in the aryl residueare positions C-1, C-2, C-3, C-4 and C-5. In the propenone fragment, the radical НО∙ first attacks position 8, then 7. For the hydroxy-substituted, the energy of the homolytic breaking of the H – O bond has been determined and it has been established that the spatial difficulty of phenols (compounds 13k, 13x, 13f, 14k, 14x, 14f) H-O bonds are the smallest and on average are -160.63 kJ/mol. It has also been established that the higher the positive Mulliken charge on the carbon atom with which the phenolic hydroxyl is bound, the lower the energy of the homolytic breaking of the H – O bond and the more stable the resulting phenoxy radicalis.Conclusion. The carried out quantum chemical calculations allow us to conclude that the studied classes of compounds can be used to bind the hydroxyl radical formed in the body, causing various kinds of mutations, leading, among other things, to the development of oncological diseases.

About the authors

E. T. Oganesyan

Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University

Email: edwardov@mail.ru

S. S. Shatokhin

Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University

Email: Shatohin.stanislav95@yandex.ru

A. A. Glushko

Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University

Email: alexander.glushko@lcmmp.ru

References

  1. Афанасьев И.Б. Кислородные радикалы в биологических процессах // Химико-фармацевтический журнал. – 1958. – Т. 19, №1. – C. 11–23.
  2. Владимиров Ю.А. Свободные радикалы в биологических системах // Соросовский образовательный журнал. – 2000. – Т. 6, №12. – С. 13–19.
  3. Владимиров Ю.А., Арчаков А.И. Перекисное окисление липидов в биологических мембранах. – М.: Наука, 1972. – 252 с.
  4. Минаева В.Т. Флавоноиды в онтогенезе растений и их практическое использование. – М.: Наука, 1978. – 256 с.
  5. Geissman T.A. The chemistry of flavonoid compounds. – New York: Pergamon Press, Oxford, 1962. – P. 666.
  6. Plant flavonoids in biology and medicine. Biochemical, pharmacological, and structureactivity relationships. Proceedings of a symposium. Buffalo, New York, July 22–26, 1985 // Prog Clin Biol Res. – 1986. – №213. – P. 1–592.
  7. Осипов А.Н., Якутова Э.Ш., Владимиров Ю.А. Образование гидроксильных радикалов при взаимодействии гипохлорита с ионами железа // Биофизика. – 1993. – Т. 38, №3. – С. 390–396.
  8. Koppenol W.H. The Haber-Weiss cycle – 70 years later // Redox Rep. – 2001. – Vol. 6, №4. – P. 229– 234. doi: 10.1179/135100001101536373.
  9. Pryor W.A. Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of production that can occur near DNA // Free Radic Biol Med. – 1988. – Vol. 4, №4. – P. 219–223.
  10. Агаджанаян В.С., Оганесян Э.Т. Применение квантово-химических методов анализа для интерпретации антирадикальной активности в ряду гидроксипроизводных коричной кислоты // Химико-фармацевтический журнал. – 2008. – Т. 42, №11. – C. 12–17. https://doi.org/10.30906/0023-1134-2008-42-11-12-17.
  11. Агаджанаян В.С., Оганесян Э.Т., Абаев В.Т. Целенаправленный поиск соединения-лидера в ряду производных коричной кислоты, обладающих антирадикальной активностью // Химико-фармацевтический журнал. – 2010. – Т. 44, №7. – C. 21–26. https://doi.org/10.30906/0023-1134-2010-44-7-21-26.
  12. Оганесян Э.Т., Мальцев Ю.А., Творовский Д.Е. Исследование механизма реакции производных флавона с гидроксильным радикалом полуэмпирическими методами // Журнал общей химии. – 2001. – Т. 71, №6. – С.999-1005. doi: 10.1023/A:1012395821594.
  13. Оганесян Э.Т., Доркина Е.Г., Хочава М.Р., Тускаев В.А., Мальцев Ю.А. Использование квантово-химических методов для обоснования антирадикального (НО∙) действия полигидроксихалконов // Химико-фармацевтический журнал. – 2002. – Т. 36, №12. – C. 21–25.
  14. Справочник химика. М.: Химия. – 1964. – Т. 3. – 1005 с.
  15. Bykov D., Petrenko T., Izsák R., Kossmann S., Becker U., Valeev E., Neese F. Efficient implementation of the analytic second derivatives of Hartree–Fock and hybrid DFT energies: a detailed analysis of different approximations // Molecular Physics. – 2015. – Vol. 113, №13–14. – Р. 1961–77. doi: 10.1080/00268976.2015.1025114.
  16. Минкин В.И., Симкин Б.Я., Миняев Р.М. Теория строения молекул. – Ростов-на-Дону, 1997. – 560 с.
  17. Воронков А.В., Оганесян Э.Т., Поздняков Д.И., Абаев В.Т. Некоторые аспекты церебропротекторной активности 4-гидрокси-3,5-дитретбу-тилкоричной кислоты при ишемическом повреждении головного мозга в эксперименте // Медицинский вестник Северного Кавказа. – 2018. – Т. 13, №1.1. – С. 90–93. https://doi.org/10.14300/mnnc.2018.13025.
  18. Воронков А.В., Поздняков Д.И., Хури Е.И., Кульбекова Ю.Е., Кобин А.А. Оценка антиоксидантной активности 4-гидрокси-3,5-дитретбутилко-ричной кислоты, мексидола и тиоктовой кислоты на модели фокальной ишемии головного мозга // Вопросы биологической, медицинской и фармацевтической химии. – 2017. – Т. 60, №2. – С. 48–52.
  19. Воронков А.В., Оганесян Э.Т., Поздняков Д.И., Абаев В.Т. Изучение дозозависимого эндотелиотропного влияния соединения ATACL в условиях ишемического повреждения головного мозга у крыс в эксперименте // Вестник Волгоградского государственного медицинского университета. – 2017. – №1(61). – С. 54–58.
  20. Воронков А.В., Оганесян Э.Т., Геращенко А.Д. Аспекты актопротекторной активности некоторых природных соединений различной химической структуры // Спортивная медицина: наука и практика. – 2017. – Т. 7, №1. – С. 92–96. doi: 10.17238/ISSN2223-2524.2017.1.92.

Copyright (c) 2019 Oganesyan E.T., Shatokhin S.S., Glushko A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies