PECULIARITIES OF CULTIVATION OF HAEMOPHILUS INFLUENZAE TYPE B STRAINS - PRODUCERS OF POLYRIBOSYLRIBITOL PHOSPHATE - THE MAIN COMPONENT OF POLYSACCHARIDE VACCINES


Cite item

Full Text

Abstract

One of the up-to-date challenges of modern immunobiotechnology is the development and introduction of an effective vaccine against the infection caused by the bacterium Haemophilus influenza, type b (Hib). The main active substance of the vaccine against Hib infection is the capsular polysaccharide polyribosylribitol phosphate (PRP), which is isolated from the fermentation broth of H. influenzae type b. An important technological step in obtaining PRP is the cultivation of the producer strain under conditions that allow obtaining the maximum amount of the target product. At the moment, it is planned to select the optimal conditions for cultivation of H. influenzae type b B-7884, which had been earlier isolated and identified by the employees of FSUE “Saint-Petersburg scientific research institute of vaccines and serums and the enterprise for the production of bacterial preparations” of FMBA, Russia. The analysis of literature data concerning the cultivation of H. influenzae type b was made in order to identify the main factors influencing the biosynthesis of PRP.The aim of the investigation is to analyze and summarize the literature data on the cultivation peculiarities of haemophilus influenzae of b-type strains.Materials and methods. In the process of selecting the material for writing this review article. The databases of Google Patents, Science Research Portal, Google Scholar, ScienceDirect, CiteSeer Publications ResearchIndex, Ingenta, PubMed, KEGG, etc. were used.Results and discussion. As a result of the literature analysis, the main factors influencing the PRP biosynthesis were identified: the nature and concentration of carbon and nitrogen sources in the growth medium, the concentration of growth factors (nicotinamide adenine dinucleotide, hemin, vitamins), additional feed, pH adjustment during cultivation, stirring speed. The data of PRP-producing strains and the conditions of their cultivation have been summarized, as well as the amount of synthesized PRP, which essentially depends on both the physiological capabilities of the biological agent and the factors effecting the regulation of metabolism.Conclusion. The results of this work will be taken into account in carrying out the researches for optimization of H. influenzae type b B-7884 strain cultivation conditions.

About the authors

E. L. Salimova

The federal state unitary enterprise “Saint-Petersburg scientific research institute of vaccines and serums and the enterprise for the production of bacterial preparations” of Federal medical and biologic agency

Email: e.l.salimova@spbniivs.ru

A. D. Konon

The federal state unitary enterprise “Saint-Petersburg scientific research institute of vaccines and serums and the enterprise for the production of bacterial preparations” of Federal medical and biologic agency

Email: a.d.konon@spbniivs.ru

S. V. Petrovskii

The federal state unitary enterprise “Saint-Petersburg scientific research institute of vaccines and serums and the enterprise for the production of bacterial preparations” of Federal medical and biologic agency

Email: fake@neicon.ru

V. P. Truhin

The federal state unitary enterprise “Saint-Petersburg scientific research institute of vaccines and serums and the enterprise for the production of bacterial preparations” of Federal medical and biologic agency

Email: fake@neicon.ru

I. V. Krasilnikov

The federal state unitary enterprise “Saint-Petersburg scientific research institute of vaccines and serums and the enterprise for the production of bacterial preparations” of Federal medical and biologic agency

Email: i.v.krasilnikov@spbniivs.ru

References

  1. Almeida A.F., Trindade E., B. Vitor A., Tavares M. Haemophilus influenzae type b meningitis in a vaccinated and immunocompetent child // J Infect Public Health. 2017. No 10(3). P. 339–342. doi: 10.1016/j.jiph.2016.06.001.
  2. Sakata H., Adachi Y., Morozumi M., Ubukata K. Invasive Haemophilus influenzae infections in children in Kamikawa subprefecture, Hokkaido, Japan, 2006-2015: The effectiveness of H. influenzae type b vaccine // J Infect Chemother. 2017. No. 7. P. 459–462. doi: 10.1016/j.jiac.2017.03.019.
  3. Wood N., Menzies R., McIntyre P. Epiglottitis in Sydney before and after the introduction of vaccination against Haemophilus influenzae type b disease // Intern Med J. 2005. No. 35 (9). P. 530-535. doi: 10.1111/j.1445-5994.2005.00909.x.
  4. Slack M.P.E. A review of the role of Haemophilus influenzae in community-acquired pneumonia // Pneumonia. 2015. No. 6(1). P. 26–43. DOI.org/10.15172/pneu.2015.6/520.
  5. Kelly D.F., Moxon E.R., Pollard A.J. Haemophilus influenzae type b conjugate vaccines // Immunology. 2004.No. 2. P. 163-174. doi: 10.1111/j.1365-2567.2004.01971.x.
  6. Briere E.C., Rubin L., Moro P.L., Cohn A., Clark T., Messonnier N. Prevention and control of Haemophilus influenzae type b disease: recommendations of the advisory committee on immunization practices (ACIP) // MMWR Recomm Rep. 2014. No. 63(RR-01). P. 1–14.
  7. Davis S., Feikin D., Johnson H.L. The effect of Haemophilus influenzae type b and pneumococcal conjugate vaccines on childhood meningitis mortality: a systematic review // BMC Public Health. 2013. No. 13 Suppl. 3. P. 21. doi: 10.1186/1471-2458-13-S3-S21.
  8. Chongmelaxme B., Hammanee M., Phooaphirak W., Kotirum S., Hutubessy R., Chaiyakunapruk N. Economic evaluations of Haemophilus influenzae type b (Hib) vaccine: a systematic review // J Med Econ. 2017. No. 20(10). P. 1094–1106. doi: 10.1080/13696998.2017.1359181.
  9. Howie S.R., Oluwalana C., Secka O., Scott S., Ideh R.C., Ebruke B.E., Balloch A., Sambou S., Erskine J., Lowe Y., Corrah T., Adegbola R.A. The effectiveness of conjugate Haemophilus influenzae type b vaccine in the Gambia 14 years after introduction clinical infectious diseases // Clin Infect Dis. 2013. No. 57(11). P. 1527–34. doi: 10.1093/cid/cit598.
  10. Otczyk D.C., Cripps A.W. Vaccination for the control of childhood bacterial pneumonia – Haemophilus influenzae type b and pneumococcal vaccines // Pneumonia. 2013. No. 2(1). P. 2–15. doi: 10.15172/pneu.2013.2/229.
  11. Arvas A., Gur E., Bahar H., Torun M.M., Demirci M., Aslan M., Kocazeybek B. Haemophilus influenzae type b antibodies in vaccinated and non-vaccinated children // Pediatr Int. 2008. No. 50(4). P. 469–473. doi: 10.1111/j.1442-200X.2008.02591.x.
  12. World Health Organization: Recommendations for the production and control of Haemophilus influenzae type b conjugate vaccines // WHO Technical Report Series. 2000. N 897. URL: http://www.who.int/biologicals/publications/trs/areas/vaccines/haemophilus/en/ (дата обращения: 01.08.2017).
  13. Салимова Е.Л., Конон А.Д., Трухин В.П., Петровский С.В., Красильников И.В. Haemophilus influenzae SPB тип b В-7884 – производственный штамм полисахаридных вакцин // Актуальная биотехнология. 2016. № 3 (18). С. 77–81.
  14. Трухин В.П., Петровский С.В., Красильников И.В., Начарова Е.П., Евтушенко А.Э., Салимова Е.Л., Конон А.Д., Уйба С.В. Штамм Haemophilus influenzae SPB тип в – высокоактивный продуцент капсульного полисахарида полирибозилрибитолфосфата // Пат. 2624014. Рос. Федерация N 2016113658; заявл. 08.04.2016; опубл. 30.06.2017, Бюл. N 19. 8 с.
  15. da Silva M.R., Andreia Freixo Portela C., Maria Ferreira Albani S., Rizzo de Paiva P., Massako Tanizaki M., Zangirolami T.C. Experimental design and metabolic flux analysis tools to optimize industrially relevant Haemophilus influenzae type b growth medium // Biotechnol Prog. 2017. doi: 10.1002/btpr.2546.
  16. Anderson P., Pitt J., Smith D.H. Synthesis and release of polyribophosphate by Haemophilus influenzae type b in vitro // Infect Immun. 1976. No 13(2). P. 581–589.
  17. Hamidi A., Beurret M.F.; De Staat Der Nederlanden, Vert. Door De Minister Van Vws. Process for producing a capsular polysaccharide for use in conjugate vaccines // Patent US 7582459 B2. United States. 2009 Sep 1.
  18. Herriott R.M., Meyer E.Y., Vogt M., Modan M. Defined medium for growth of Haemophilus influenza // J Bacteriol. 1970. No. 101(2). P. 513–516.
  19. Wolin H.L. Defined medium for Haemophilus influenzae type b // J Bacteriol. 1963. No. 85. P. 253–254.
  20. Klein R.D., Luginbuhl G.H. Simplified media for the growth of Haemophilus infruenzae from clinical and normal flora sources // J Gen Microbiol. 1979. No. 113(2). P. 409–411.
  21. Artman M., Domenech E., Weiner M. Growth of Haemophilus influenzae in simulated blood cultures supplemented with hemin and NAD // J Clin Microbiol. 1983. No. 18(2). P. 376–379.
  22. Esmaily F., Aminian M., Tavangar A.R., Hadi A. Comparison of bacterial biomass and PRP production between different isolates of Haemophilus influenza type b (Hib) under different culture conditions // Archives of Razi Institute. 2011. No. 66(1). P. 43–49. doi: 10.22092/ari.2016.103865.
  23. Torabi M., Haadi A., Asli E., Aminian M., Esmaily F., Afshar M., Hatami A. A study on Haemophilus influenzae type b growth rate and capsule production in different media // Archives of Razi Institute. 2012. No. 67(1). P. 7–12. doi: 10.22092/ARI.2016.103881.
  24. Takagi M., Cabrera-Crespo J., Baruque-Ramos J., Zangirolami T.C., Raw I., Tanizaki M.M. Characterization of polysaccharide production of Haemophilus influenzae type band its relationship to bacterial cell growth // Appl Biochem Biotechnol. 2003. No. 110(2). P. 91–100.
  25. Takagi M., Zangirolami T.C., Tanizaki M.M., Cabrera-Crespo J. Improvement of simple cultivation conditions for polysaccharide synthesis by Haemophilus influenzae type b // Communicating Current Research and Educational Topics and Trends in Applied Microbiology. 2007. P. 602–608. doi: 10.1002/jctb.1377.
  26. Cope L.D., Yogev R., Muller-Eberhard U., Hansen E.J. A gene cluster involved in the utilization of both free heme and heme:hemopexin by Haemophilus influenzae type b // J Bacteriol. 1995. No. 177(10). P. 2644–2653. doi: 10.1128/jb.177.10.2644-2653.1995.
  27. Wong J.C., Holland J., Parsons T., Smith A., Williams P. Identification and characterization of an iron-regulated hemopexin receptor in Haemophilus influenzae type b // Infect Immun. 1994. No. 62(1). P. 48–59.
  28. Ella K.M., Ramasamy V., Naidu M.G., Sarma A.D. Bharat Biotech International Limited. Non-alcoholic vaccine compositions free from animalorigin and process for preparation thereof // World intellectual property organization WO 2014009971 (A2). 2014.
  29. Takagi M., Cabrera-Crespo J., Zangirolami T.C., Raw I., Tanizaki M.M. Improved cultivation conditions for polysaccharide production by H. influenzae type b // Journal of Chemical Technology & Biotechnology. 2006. No. 81(2). P. 182–188. doi: 10.1002/jctb.1377.
  30. Maitre-Wilmotte G., Speck D., Rokbi B.; Sanofi Pasteur Sa. Culture medium for Haemophilus influenzae type b // Patent US 8673617 B2.United States 2014 Mar 18.
  31. Hir J.L., Loubiere P., Barbirato F., Lindley N.; Sanofi Pasteur. Method for producing Haemophilus Influenzae type b antigens // Patent US 9556464 (B2). United States 2017 Jan 31.
  32. Babel W. Bewertung von Substraten fur das mikrobielle Wachstum auf der Grundlage ihres Kohlenstoff/EnergieVerhaltnisses // Z. Allg. Mikrobiol. 1979. No. 19. P. 671–677. doi: 10.1002/jobm.19790190910.
  33. Hagman M., Nielsen J.L., Nielsen P.H., Jansen J.l. Mixed carbon sources for nitrate reduction in activated sludgeidentification of bacteria and process activity studies // Water Res. 2008. No. 42(6-7). P. 1539–1546. DOI: //doi.org/10.1016/j.watres.2007.10.034.
  34. Fonseca R.R., Silva A.J., De França F.P., Cardoso V.L., Sérvulo E.F. Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain // Appl Biochem Biotechnol. 2007. No. 137–140(1–12). P. 471–486. doi: 10.1007/s12010-007-9073-z.
  35. Kuttiraja M., Douha A., Valéro J.R., Tyagi R.D. Elucidating the effect of glycerol concentration and C/N ratio on lipid production using Yarrowia lipolytica SKY7 // Appl Biochem Biotechnol. 2016. No. 180(8). P. 1586–1600.
  36. Nojoomi F., Nahid A.P. Effect of culture media and their ingredients on PRP production by Haemophilus influenza // International Journal of Current Microbiology and Applied Sciences. 2014. No. 3(11). P. 920–925.
  37. Ronald M. Atlas Handbook of Microbiological Media. Third Edition: CRC Press; 2004.
  38. Hamidi A., Kreeftenberg H., Pol L.V.D., Ghimire S., Wielen L.A.V.D., Ottens M. Process development of a new Haemophilus influenzae type b conjugate vaccine and the use of mathematical modeling to identify process optimization possibilities // Biotechnol Prog. 2016. No. 32(3). P. 568–580. doi: 10.1002/btpr.2235.
  39. Yeruva S., Mantha S., Tirumalaraju A., Rokkam S.R. Screening of medium components for polyribosylribitol phosphate productionby Haemophilus influenzae type-b using Plackett-Burman design // Journal of Cell & Tissue Research. 2010. No. 10(3). P. 2349–2352.
  40. Momen S.B., Siadat S.D., Akbari N., Ranjbar B., Khajeh K. Applying central composite design and response surface methodology to optimize growth and biomass production of Haemophilus influenzae type b // Jundishapur J Microbiol. 2016. No. 9(6). P. 25246. doi: 10.5812/jjm.25246.
  41. Nojoomi F., Siadat S.D., Salmanian A.H., Khoramabadi N. Improvement of large-scale PRP production by Haemophilus influenzae type b, using modified CY medium // J Fasa Univ Med Sci. 2012. No. 1(4). P. 182–186.
  42. Arsang A., Tabatabaie A., Vaziri F., Nejati M., Zolfaghari M.R., Fateh A., Jamnani F.R., Bahrmand A.R., Siadat S.D. Optimization of large scale production of Haemophilus influenzae type b polyribosyl-ribitol phosphate // Minerva Biotecnologica. 2017. No. 29(1). P. 17–23. doi: 10.23736/S1120-4826.16.01855-3.
  43. Яговкин Э.А., Вачаев Б.Ф., Шепелев А.П., Головина С.В., Алешня В.В., Медуницын Н.В., Чупрынина Р.П., Немировская Т.И., Храмова Н.И. Способ получения антигенного препарата Haemophilus influenzae типа b (Hib) // Пат. 2185191. Рос. Федерация N 2001102923/13; заявл. 01.02.2001; опубл. 20.07.2002, Бюл. N 20. URL: http://www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&DocNumber=2185191&TypeFile=html (дата обращения: 01.08.2017)
  44. Ванеева Н.П., Елкина С.И., Апарин П.Г. Штамм бактерий Haemophilus influenzae В № 326, стабильный продуцент капсульного полисахарида // Пат. 2465316 Рос. Федерация N 2011140336/10; заявл. 05.10.2011; опубл. 27.10.2012, Бюл. N 30. 5 с.
  45. Елкина С.И., Сергеев В.В., Ванеева Н.П., Апарин П.Г., Львов В.Л., Ястребова Н.Е., Орлова О.Е. Штамм Haemophilus influenzae B MECH №1 – продуцент капсульного полисахарида – полирибозилрибитолфосфата // Пат. 2257412. Рос. Федерация N 2004109822/13; заявл. 01.04.2004; опубл. 27.07.2005, Бюл. N 21. 4 с.
  46. Елкина С.И., Ванеева Н.П., Апарин П.Г., Львов В.Л., Орлова О.Е., Ястребова Н.Е. Питательная среда для культивирования бактерий Haemophilus influenzae типа b // Пат. 2258737. Рос. Федерация N 2003126461/13; заявл. 20.02.2005; опубл. 20.08.2005, Бюл. N 23. 5 с.
  47. Orlova O.E., Vaneeva N.P., L’vov V.L., Iastrebova N.E., Elkina S.I., Sergeev V.V., Kalina N.G., Zakharova N.E. Cultivation of Haemophilus influenzae, serotype B, in amino peptide-based semisynthetic nutrient medium // Zh Mikrobiol Epidemiol Immunobiol. 2002. No.3. P. 56–58.
  48. Orlova O.E. Dynamics of growth of Haemophilus influenzae serotype B and synthesis of capsular polysaccharide in the process of cultivation in a synthetic nutrient medium // Zh Mikrobiol Epidemiol Immunobiol. 2002. No. 2. P. 75–77.
  49. Orlova O.E., Elkina S.I., Iastrebova N.E., Vaneeva N.P., Sergeev V.V., Kalina N.G., Tokarskaia M.M. Influence of nicotinamide adenine dinucleotide and hemin concentrations on the growth of Haemophilus influanzae type b and the synthesis of capsular polysaccharide // Zh Mikrobiol Epidemiol Immunobiol. 2005. No.4. P. 12–15.
  50. Lance Gordon K., Connaught Lab. Haemophilus influenzae b polysaccharide exotoxoid conjugate vaccine / World intellectual property organization WO 8400300 (A1). 1984.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Salimova E.L., Konon A.D., Petrovskii S.V., Truhin V.P., Krasilnikov I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».