THE USE OF VIRTUAL REALITY IN COMBINATION WITH A BRAIN-COMPUTER INTERFACE IN MOTOR REHABILITATION

Capa

Citar

Texto integral

Resumo

Background. The purpose of this review is to determine the prospects for using virtual reality technologies in combination with the brain-computer interface in motor rehabilitation. The use of virtual reality technology (hereinafter referred to as VR) in medicine is a relevant area that opens up new prospects in the diagnosis, treatment and rehabilitation of patients. VR covers more and more areas of medicine and will be able to become its integral part, helping doctors improve the methods of diagnosis and treatment of various diseases that already exist. Materials and methods. This review presents existing developments, innovative projects and research in the field of VR used in medical education and practice. Results and conclusions. Particular attention is paid to the use of VR technologies in neurorehabilitation. The studies below reflect not only need for this technology in medicine, but also show the effectiveness and superiority of VR over traditional approaches, VR is a rapidly developing trend in the training of medical personnel, due to the unique ability to simulate real situations that require a quick and accurate response. VR allows for the creation of personalized rehabilitation programs, for example, after acute cerebrovascular accident and various injuries, providing patients with maximum involvement in the recovery process.

Sobre autores

Dmitriy Samofalov

National Research Technological University "MISiS"

Autor responsável pela correspondência
Email: dmi.samofalov@gmail.com

Postgraduate student

(b. 1, 4 Leninskiy avenue, Moscow, Russia)

Daniil Degterev

Moscow Clinical Scientific Center named after A.S. Loginov

Email: d.degterev@mknc.ru

Candidate of medical sciences, neurologist, head of the neurology department

(p. 5, 1 Novogireevskaya street, Moscow, Russia)

Daria Pechenina

Moscow Clinical Scientific Center named after A.S. Loginov

Email: darya.pechenina2017@yandex.ru

Resident

(p. 5, 1 Novogireevskaya street, Moscow, Russia)

Bibliografia

  1. Bernardo A. Virtual Reality and Simulation in Neurosurgical Training. World Neurosurgery. 2017;106:1015–1029.
  2. Dang B.K., Palicte J.S., Valdez A., O’Leary-Kelley C. Assessing Simulation, Virtual Reality, and Television Modalities in Clinical Training. Clinical Simulation in Nursing. 2018;19:30–37.
  3. Moro C., Stromberga Z., Raikos A., Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anatomical Sciences Education. 2017;10(6):549–559.
  4. Chytas D., Johnson E. O., Piagkou M. et al. The role of augmented reality in Anatomical education: An overview. Annals of Anatomy – Anatomischer Anzeiger. 2020;229:151463.
  5. Kurniawan M.H., Suharjito D., Witjaksono G. Human Anatomy Learning Systems Using Augmented Reality on Mobile Application. Procedia Computer Science. 2018;135:80–88.
  6. Duarte M.L., Santos L.R., Guimarges Junior J.B., Peccin M.S. Learning anatomy by virtual reality and augmented reality. A scope review. Morphologie: Bulletin De l’Association Des Anatomistes. 2020; 104(347): 254–266.
  7. Kempton S.J., Salyapongse A.N., Israel J.S., Mandel B.A. Surgical Education Module Improves Operative Proficiency in Endoscopic Carpal Tunnel Release: A Blinded Randomized Controlled Trial of Trainees. Journal of Surgical Education. 2018;75(2):442–449.
  8. Heinrich F., Huettl F., Schmidt G. et al. HoloPointer: a virtual augmented reality pointer for laparoscopic surgery training. International Journal of Computer Assisted Radiology and Surgery. 2021;16(1):161–168.
  9. Labovitz J., Hubbard C. The Use of Virtual Reality in Podiatric Medical Education. Clinics in Podiatric Medicine and Surgery. 2020;37(2):409–420.
  10. Duren van B.H., Sugand K., Wescott R. et al. Augmented reality fluoroscopy simulation of the guide-wire insertion in DHS surgery: A proof of concept study. Medical Engineering & Physics. 2018;55:52–59.
  11. Alaraj A., Lemole M.G., Finkle J.H. et al. Virtual reality training in neurosurgery: Review of current status and future applications. Surgical Neurology International. 2011;2:52.
  12. Rahul K., Raj V.P.D., Srinivasan K. et al. A Study on Virtual and Augmented Reality in Real-Time Surgery. IEEE International Conference on Consumer Electronics – Taiwan (ICCE-TW) 2019 IEEE International Conference on Consumer Electronics – Taiwan (ICCE-TW). 2019:1–2.
  13. Ghaednia H., Fourman M.S., Lans A. et al. Augmented and virtual reality in spine surgery, current applications and future potentials. The Spine Journal: Official Journal of the North American Spine Society. 2021;21(10):1617–1625.
  14. Intra-operative augmented reality in distal locking / Semantic Scholar. Available at: https://www.semanticscholar. org/paper/Intra-operative-augmented-reality-in-distal-locking-Londei-Esposito/ 968985e4c3976494598c091dffa283e1fa845a3d (accessed 14.12.2023).
  15. Tsukada S., Ogawa H., Nishino M. et al. Augmented reality-based navigation system applied to tibial bone resection in total knee arthroplasty. Journal of Experimental Orthopaedics. 2019;6:44.
  16. Goh G.S., Lohre R., Parvizi J., Goel D.P. Virtual and augmented reality for surgical training and simulation in knee arthroplasty. Archives of Orthopaedic and Trauma Surgery. 2021;141(12):2303–2312.
  17. Virtual Human Interaction Lab. Available at: https://vhil.stanford.edu/ (accessed 15.12.2023).
  18. Virtual Reality for Surgery | Precison XR. Available at: https://surgicaltheater.com/ (accessed 14.12.2023).
  19. Robot da Vinchi: khirurgi, kliniki, otzyvy, preimushchestva, lechenie = The Da Vinci robot: surgeons, clinics, reviews, benefits, treatment. (In Russ.). Available at: https://robot-davinci.ru/ (accessed 14.12.2023).
  20. Murashko A.A. Possibilities of using virtual reality in psychiatry. Sotsial'naya i klinicheskaya psikhiatriya = Social and clinical psychiatry. 2021;31(2):101–105. (In Russ.)
  21. Virtually Better | Emory University | Atlanta GA. Available at: https://ott.emory.edu/about/success/virtuallybetter. html (accessed 14.12.2023).
  22. VR Software for Mental Health Professionals’ Therapy. Available at: https://ameliavirtualcare.com/ (accessed 14.12.2023).
  23. Zhang W., Paudel D., Shi R. et al. Virtual Reality Exposure Therapy (VRET) for Anxiety Due to Fear of COVID-19 Infection: A Case Series. Neuropsychiatric Disease and Treatment. 2020;16:2669–2675.
  24. Programma virtual'noy neyroreabilitatsii dlya vosstanovleniya funktsiy verkhnikh i nizhnikh konechnostey «Devirta – Delfi» – kupit' po vygodnoy tsene v Moskve v GK «Istok-Audio» = Virtual neurorehabilitation program for restoring the functions of the upper and lower extremities "Devirta – Delphi" – buy at a bargain price in Moscow at Istok-Audio Group. (In Russ.). Available at: https://www.istok-audio.com/catalog/product/ virtualnaya_reabilitatsiya_devirta (accessed 14.12.2023).
  25. Trenazher dlya passivnoy reabilitatsii ReviVR = ReviVR Passive Rehabilitation Simulator. (In Russ.). Available at: https://revi.life/products/revivr/ (accessed 15.12.2023).
  26. VR GO – O nas. (In Russ.). Available at: https://vrgo.team/about (accessed 14.12.2023).
  27. Dolganov M.V., Karpova M.I. The effectiveness of using virtual reality technologies in post-stroke paresis of the upper limb. Permskiy meditsinskiy zhurnal = Perm Medical Journal. 2018;35(1):60–67. (In Russ.). doi: 10.17816/pmj35160-67
  28. Khizhnikova A.E., Klochkov A.S., Kotovsmolenskiy A.M. et al. Virtual reality as a method of restoring the motor function of the hand. Annaly klinicheskoy i eksperimental'noy nevrologii = Annals of Clinical and Experimental Neurology. 2016;(3):5–11. (In Russ.)
  29. Chen J., Or C.K., Chen T. Effectiveness of Using Virtual Reality-Supported Exercise Therapy for Upper Extremity Motor Rehabilitation in Patients With Stroke: Systematic Review and Meta-analysis of Randomized Controlled Trials. Journal of Medical Internet Research. 2022;24(6):e24111.
  30. Mane R., Wu Z., Wang D. Poststroke motor, cognitive and speech rehabilitation with brain-computer interface: a perspective review. Stroke and Vascular Neurology. 2022;7(6):541–549.
  31. Poverennova I.E., Zakharov A.V., Khivintseva E.V. et al. Preliminary results of a study on the effectiveness of using virtual reality techniques to restore the motor function of the lower extremities in patients with acute stroke. Saratovskiy nauchno-meditsinskiy zhurnal = Saratov Scientific and Medical Journal. 2019;(15):172–176. (In Russ.)
  32. Aramaki A.L., Sampaio R.F., Cavalcanti A. Dutra FCMSE. Use of client-centered virtual reality in rehabilitation after stroke: a feasibility study. Arquivos de Neuro-Psiquiatria. 2019;77(9):622–631. doi: 10.1590/0004-282X20190103
  33. Zhang B., Li D., Liu Y. et al. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: A systematic review and meta-analysis. Journal of Advanced Nursing. 2021;77(8):3255–3273. doi: 10.1111/jan.14800
  34. Rutkowski S., Kiper P., Cacciante L. et al. Use of virtual reality-based training in different fields of rehabilitation: A systematic review and meta-analysis. Journal of Rehabilitation Medicine. 2020; 52(11):jrm00121.
  35. Nekrasova Yu.Yu., Vorontsova V.S., Kanarskiy M.M. et al. Application of virtual reality technology in complex medical rehabilitation. Mediko-biologicheskie, klinicheskie i sotsial'nye voprosy zdorov'ya i patologii cheloveka: VII Vseros. nauch. konf. studentov i molodykh uchenykh s mezhdunarodnymuchastiem (g. Ivanovo, 6 aprelya 2021 g.) = Biomedical, clinical and social issues of human health and pathology : VII All-Russian Scientific Conference of Students and Young Scientists with international participation (Ivanovo, April 6, 2021). Ivanovo: Ivanovskaya gosudarstvennaya meditsinskaya akademiya, 2021:60–62. (In Russ.)
  36. Gundelakh F.V., Stankevich L.A., Son'kin K.M. The use of "brain-computer" interfaces in assistive technologies. Trudy SPIIRAN = Proceedings of SPIIRAN. 2020;19(2):277–301. (In Russ.). doi: 10.15622/ sp.2020.19.2.2
  37. Petrikov S.S., Grechko A.V., Shchelkunova I.G. et al. New prospects for motor rehabilitation of patients after focal brain damage. Voprosy neyrokhirurgii imeni N.N. Burdenko = Issues of neurosurgery named after N.N. Burdenko. 2019;(83):90–99. (In Russ.). doi: 10.17116/neiro20198306190
  38. Kryuchkov Yu.A., Shchukovskiy N.V., Sholomov I.I. The use of the BRAIN-COMPUTER interface in the rehabilitation of patients with motor disorders after a stroke. Ul'yanovskiy mediko-biologicheskiy zhurnal = Ulyanovsk Medical and Biological Journal. 2019;(33):8–16. (In Russ.)
  39. Pogonchenkova I.V., Kostenko E.V., Petrova L.V. Brain-computer interface with hand exoskeleton: new rehabilitation opportunities. Moskovskaya meditsina = Moscow medicine. 2022;(4):20–25. (In Russ.)
  40. Larina N.V., Korsunskaya L.L., Vlasenko S.V. The Exokist-2 complex in the rehabilitation of the upper limb in cerebral palsy using a non-invasive brain-computer interface. Nervno-myshechnye bolezni = Neuromuscular diseases. 2019;(9):44–50. (In Russ.)
  41. Karyakin N.N., Sheyko G.E., Volovik M.G., Belova A.N. Virtual reality technologies in complex medical rehabilitation of patients with cerebral palsy. Byulleten' sibirskoy meditsiny = Bulletin of Siberian Medicine. 2020;19(2):142–152. (In Russ.). doi: 10.20538/1682-0363-2020-2-142–152
  42. Massetti T, da Silva T.D., Crocetta T.B. et al. The Clinical Utility of Virtual Reality in Neurorehabilitation: A Systematic Review. Journal of Central Nervous System Disease. 2018;10. doi: 10.1177/1179573518813541
  43. Sorokina V.S., Nekrasova Yu.Yu., Shtern M.V. et al. Application of virtual reality technology for psychological rehabilitation of patients after brain damage. Virtual'nye tekhnologii v meditsine = Virtual technologies in medicine. 2022;(1):26–30. (In Russ.)
  44. Lyukmanov R.Kh., Chernikova L.A., Mokienko O.A. Brain–computer interface: the first experience of clinical application in Russia. Fiziologiya cheloveka = Human Physiology. 2016;42(1):31–39. doi: 10.7868/ S0131164616010136
  45. Flesher S.N., Downey J.E., Weiss J.M. et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science. 2021;372(6544):831–836.
  46. Kanarskiy M.M., Nekrasova Yu.Yu., Borisov I.V. et al. VR technologies in neurorehabilitation. Vestnik Vserossiyskogo obshchestva spetsialistov po mediko-sotsial'noy ekspertize, reabilitatsii i reabilitatsionnoy industrii = Bulletin of the All-Russian Society of Specialists in Medical and Social Expertise, rehabilitation and Rehabilitation Industry. 2021;(1):59–70. (In Russ.). doi: 10.17238/issn1999-2351.2021.1.59-70

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».