Effect of self-fluidization of reaction medium and its application to the combustion synthesis of Ni–Al intermetallics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper studies the mechanism of self-propagating high-temperature synthesis in powder mixtures of . Using CaCO  makes it possible to form a fluidized state of the reaction mixture in the preheat zone of the combustion wave and synthesize highly permeable intermetallic alloys. The mechanism was studied using high-speed imaging, dynamic temperature measurements, and reaction quenching. It was found that highly mobile microdroplets of reacting Ni and Al melts (~0,1-0,2 mm in diameter) participate in the structural transformation of the reaction medium in the combustion wave zone. A wide range of capillary processes accompanies the synthesis: ( ) formation of droplets in the process of reaction coalescence of melts; ( ) intake of melting powder by moving droplets; ( ) wrapping a rolling droplet with a thin layer of newly-formed melt; and ( ) thermocapillary drift of droplets in a fluidizing powder medium. The effect of self-fluidization of the reaction mixture on the structure of the synthesized alloys has been discussed.

Sobre autores

Alexander Kirdyashkin

Tomsk Scientific Сenter, Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: kirdyashkin_a@mail.ru

Candidate of Science in physics and mathematics, leading research scientist

Rússia, Tomsk

Vladimir Kitler

Tomsk Scientific Сenter, Siberian Branch of the Russian Academy of Sciences

Email: vladimir_kitler1@mail.ru

Candidate of Science in physics and mathematics, research scientist

Rússia, Tomsk

Ramil Gabbasov

Tomsk Scientific Сenter, Siberian Branch of the Russian Academy of Sciences

Email: ramilus@yandex.ru

Candidate of Science in technology, research scientist

Rússia, Tomsk

Anatoly Maznoy

Tomsk Scientific Сenter, Siberian Branch of the Russian Academy of Sciences

Email: maznoy_a@mail.ru

Doctor of Science in technology, leading research scientist

Rússia, Tomsk

Bibliografia

  1. Jiao, X., Y. Liu, X. Cai, J. Wang, and P. Feng. 2021. Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: A review. J. Mater. Sci. 56:11605–11630. doi: 10.1007/s10853-021-06035-5.
  2. Thiers, L., A. S. Mukasyan, and A. Varma. 2002. Thermal explosion in Ni–Al system: Influence of reaction medium microstructure. Combust. Flame 131:198–209. doi: 10.1016/S0010-2180(02)00402-9.
  3. Biswas, A., and S. K. Roy. 2004. Comparison between the microstructural evolutions of two modes of SHS of NiAl: Key to a common reaction mechanism. Acta Mater. 52:257–270. doi: 10.1016/j.actamat.2003.08.018.
  4. Rogachev, A. S., S. G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N. V. Sachkova, M. D. Grapes, T. P. Weihs, and A. S. Mukasyan. 2016. Combustion in reactive multilayer Ni/Al nanofoils: Experiments and molecular dynamic simulation. Combust. Flame 166:158–169. doi: 10.1016/j.combustflame.2016.01.014.
  5. Shabouei, M., W. Subber, C. W. Williams, K. Matouš, and J. M. Powers. 2019. Chemo-thermal model and Gaussian process emulator for combustion synthesis of Ni/Al composites. Combust. Flame 207:153–170. doi: 10.1016/ j.combustflame.2019.05.038.
  6. Fan, Q., H. Chai, and Z. Jin. 2001. Dissolution–precipitation mechanism of self-propagating high-temperature synthesis of mononickel aluminide. Intermetallics 9:609–619. doi: 10.1016/S0966-9795(01)00046-2.
  7. Zhu, P., J. C. M. Li, and C. T. Liu. 2002. Reaction mechanism of combustion synthesis of NiAl. Mater. Sci. Eng. A — Struct. 329-331:57–68. doi: 10.1016/S0921-5093(01)01549-0.
  8. Morsi, K. 2001. Review: Reaction synthesis processing of Ni–Al intermetallic materials. Mater. Sci. Eng. A — Struct. 299:1–15. doi: 10.1016/s0921-5093(00)01407-6.
  9. Jiang, Y., Y. He, and H. Gao. 2021. Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties. J. Mater. Sci. Technol. 74:89–104. doi: 10.1016/j.jmst.2020.10.007.
  10. Miura, S., T. Ohashi, and Y. Mishima. 1997. Amount of liquid phase during reaction synthesis of nickel aluminides. Intermetallics 5:45–59. doi: 10.1016/S0966-9795(96)00065-9.
  11. Plazanet, L., and F. Nardou. 1998. Reaction process during relative sintering of NiAl. J. Mater. Sci. 33:2129–2136. doi: 10.1023/A:1004375304423.
  12. Hibino, A., S. Matsuoka, and M. Kiuchi. 2001. Synthesis and sintering of Ni Al intermetallic compound by combustion synthesis process. J. Mater. Process. Tech. 112:127–135. doi: 10.1016/s0924-0136(01)00558-1.
  13. Maznoy, A., A. Kirdyashkin, V. Kitler, and A. Solovyev. 2017. Combustion synthesis and characterization of porous Ni–Al materials for metal-supported solid oxide fuel cells application. J. Alloy. Compd. 697:114–123. doi: 10.1016/j.jallcom.2016.11.350.
  14. Cai, X., Z. Li, X. Jiao, J. Wang, X. Kang, P. Feng, F. Akhtar, and X. Wang. 2021. Preparation of porous NiAl intermetallic with controllable shape and pore structure by rapid thermal explosion with space holder. Met. Mater. Int. 27:4216–4224. doi: 10.1007/s12540-020-00904-5.
  15. Maznoi, A., and A. Kirdyashkin. 2014. Influence of initial parameters of reacting systems on the porosity structure of self-propagating high-temperature synthesis products. Combust. Explo. Shock Waves 50(1):60–67.
  16. Kirdyashkin, A., V. Kitler, V. Salamatov, R. Yusupov, and Yu. Maksimov. 2007. Capillary hydrodynamic phenomena in gas-free combustion. Shock Waves 43(6):645–653.
  17. Rogachev, A. S., A. Varma, and A. G. Merzhanov. 1993. The mechanism of self-propagating high-temperature synthesis of nickel aluminides, Part I: Formation of the product microstructure in a combustion wave. Int. J. Self-Propagating High-Temperature Synthesis 2:25–38.
  18. Mukasyan, A. S., and A. S. Rogachev. 2008. Discrete reaction waves: Gasless combustion of solid powder mixtures. Prog. Energ. Combust. 34:377–416. doi: 10.1016/j.pecs.2007.09.002.
  19. Rogachev, A. S., N. A. Kochetov, V. V. Kurbatkina, E. A. Levashov, P. S. Grinchuk, O. S. Rabinovich, N. V. Sachkova, and F. Bernard. 2006. Microstructural aspects of gasless combustion of mechanically activated mixtures. I. High-speed microvideorecording of the Ni–Al composition. Combust. Explo. Shock Waves 42(4):421–429.
  20. Rogachev, A. S., and A. S. Mukasyan. 2014. Combustion for material synthesis. CRC Press. 424 p. doi: 10.1201/b17842.
  21. Manukyan, K., N. Amirkhanyan, S. Aydinyan, V. Danghyan, R. Grigoryan, N. Sarkisyan, G. Gasparyan, R. Aroutiounian, and S. Kharatyan. 2010. Novel NiZr-based porous biomaterials: Synthesis and in vitro testing. Chem. Eng. J. 162:406–414. doi: 10.1016/j.cej.2010. 05.042.
  22. Cui, H., L. Cao, Y. Chen, and J. Wu. 2012. Unique microstructure of porous NiAl intermetallic compound prepared by combustion synthesis. J. Porous Mat. 19: 415–422. doi: 10.1007/s10934-011-9489-2.
  23. Bassani, P., E. Bassani, M. Coduri, P. Giuliani, A. Tuissi, and C. Zanotti. 2015. Influence of TiH addition on SHS porous shape memory alloy. Mater. Today — Proc. 2:S715–S718. doi: 10.1016/j.matpr.2015.07.382.
  24. Yeh, C. L., and W. E. Sun. 2016. Use of TiH as a reactant in combustion synthesis of porous Ti Si and Ti Si /TiAl intermetallics. J. Alloy. Compd. 669:66–71. doi: 10.1016/j.jallcom.2016.01.236.
  25. Maznoy, A., A. Kirdyashkin, V. Kitler, N. Pichugin, V. Salamatov, and K. Tcoi. 2019. Self-propagating high-temperature synthesis of macroporous B2 + L1 Ni–Al intermetallics used in cylindrical radiant burners. J. Alloy. Compd. 792:561–573. doi: 10.1016/j.jallcom.2019.04.023.
  26. Maznoy, A. S., A. I. Kirdyashkin, and N. S. Pichugin. 2018. Radiatsionnye gorelki tsilindricheskoy formy s maksimal’noy effektivnost’yu preobrazovaniya energii goreniya v izluchenie [Cylindrical radiant burners with maximal radiation]. Goren. Vzryv (Mosk.) — Combustion and Explosion 11:56–65. doi: 10.30826/CE18110208.
  27. Maznoy, A. S., I. A. Yakovlev, N. S. Pichugin, S. D. Zambalov, and K. A. Tcoi. 2018. Vliyanie strategii vvoda toplivno-vozdushnoy smesi na kharakteristiki tsilindricheskikh radiatsionnykh gorelok s tonkosloynym poristym izluchatelem [Effect of the design of gas supply system on the performance of cylindrical radiant burners]. Goren. Vzryv (Mosk.) — Combustion and Explosion 14:35–42. doi: 10.30826/CE21140305.
  28. Maznoy, A., N. Pichugin, A. Kirdyashkin, E. Yakovlev, I. Yakovlev, S. Zambalov, and A. Guschin. 2023. Predicting oxidation-limited lifetime of Ni–Al–Cr porous radiant burners made by combustion synthesis. J. Alloy. Compd. 934:167885. doi: 10.1016/j.jallcom.2022.167885.
  29. Kirdyashkin, A. I., R. M. Gabbasov, V. D. Kitler, and A. S. Maznoy. 2020. Eksperimental’noe issledovanie obzhigovoy pechi na printsipe fil’tratsionnogo goreniya gazov [Experimental investigation of the high-temperature sintering furnace based on filtration gas combustion]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13:49–61. doi: 10.30826/ce20130406.
  30. Okamoto, H., and T. B. Massalski. 1990. Binary alloy phase diagrams. Materials Park, OH: ASM International. 3 vols. 3611 p.
  31. Lewis, A. E., M. M. Seckler, H. Kramer, and G. Van Rosmalen. 2015. Industrial crystallization: Fundamentals and applications. Cambridge, U.K.: Cambridge University Press. 323 p. doi: 10.1017/cbo9781107280427.
  32. Subramanian, R. S. 1985. The Stokes force on a droplet in an unbounded fluid medium due to capillary effects. J. Fluid Mech. 153:389–400. doi: 10.1017/s0022112085001306.
  33. Rednikov, A. Y., Y. S. Ryazantsev, and M. G. Velarde. 1998. Drop motion with surfactant transfer in a homogeneous surrounding. Phys. Fluids 6:451. doi: 10.1063/1.868343.
  34. Kirdyashkin, A., V. Kitler, V. Salamatov, and R. Yusupov. 2008. Specific features of structural dynamics of high-temperature metallothermal processes with the FeO–Al–Al O system as an example. Combust. Explo. Shock Waves 44(1):71–75.
  35. Kupiec, K., and T. Komorowicz. 2010. Simplified model of transient radiative cooling of spherical body. Int. J. Therm. Sci. 49:1175–1182. doi: 10.1016/j.ijthermalsci. 2010.01.009.
  36. Halikia I., L. Zoumpoulakis, E. Christodoulou, and D. Prattis. 2001. Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis. Eur. J. Mineral Processing Environmental Protection 1:89–102.
  37. Gergely, V., D. C. Curran, and T. W. Clyne. 2003. The FOAMCARP process: Foaming of aluminium MMCs by the chalk–aluminium reaction in precursors. Compos. Sci. Technol. 63:2301–2310. doi: 10.1016/S0266-3538(03)00263-X.
  38. Jacob, K. T., and S. Srikanth. 1990. Physical chemistry of the reduction of calcium oxide with aluminum in vacuum. High Temp. Mater. Proc. 9:77–92. doi: 10.1515/ HTMP.1990.9.2-4.77/machinereadablecitation/ris.
  39. El-Sadek, M. H., K. El-Barawy, and I. M. Morsi. 2018. Production of calcium metal by aluminothermic reduction of Egyptian limestone ore. Can. Metall. Quart. 58:213–222. doi: 10.1080/00084433.2018.1544343.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».