Effect of self-fluidization of reaction medium and its application to the combustion synthesis of Ni–Al intermetallics
- Autores: Kirdyashkin A.I.1, Kitler V.D.1, Gabbasov R.M.1, Maznoy A.S.1
-
Afiliações:
- Tomsk Scientific Сenter, Siberian Branch of the Russian Academy of Sciences
- Edição: Volume 16, Nº 3 (2023)
- Páginas: 108-123
- Seção: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/290009
- DOI: https://doi.org/10.30826/CE23160311
- EDN: https://elibrary.ru/OWXBDN
- ID: 290009
Citar
Resumo
The paper studies the mechanism of self-propagating high-temperature synthesis in powder mixtures of . Using CaCO makes it possible to form a fluidized state of the reaction mixture in the preheat zone of the combustion wave and synthesize highly permeable intermetallic alloys. The mechanism was studied using high-speed imaging, dynamic temperature measurements, and reaction quenching. It was found that highly mobile microdroplets of reacting Ni and Al melts (~0,1-0,2 mm in diameter) participate in the structural transformation of the reaction medium in the combustion wave zone. A wide range of capillary processes accompanies the synthesis: ( ) formation of droplets in the process of reaction coalescence of melts; ( ) intake of melting powder by moving droplets; ( ) wrapping a rolling droplet with a thin layer of newly-formed melt; and ( ) thermocapillary drift of droplets in a fluidizing powder medium. The effect of self-fluidization of the reaction mixture on the structure of the synthesized alloys has been discussed.
Palavras-chave
Sobre autores
Alexander Kirdyashkin
Tomsk Scientific Сenter, Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: kirdyashkin_a@mail.ru
Candidate of Science in physics and mathematics, leading research scientist
Rússia, TomskVladimir Kitler
Tomsk Scientific Сenter, Siberian Branch of the Russian Academy of Sciences
Email: vladimir_kitler1@mail.ru
Candidate of Science in physics and mathematics, research scientist
Rússia, TomskRamil Gabbasov
Tomsk Scientific Сenter, Siberian Branch of the Russian Academy of Sciences
Email: ramilus@yandex.ru
Candidate of Science in technology, research scientist
Rússia, TomskAnatoly Maznoy
Tomsk Scientific Сenter, Siberian Branch of the Russian Academy of Sciences
Email: maznoy_a@mail.ru
Doctor of Science in technology, leading research scientist
Rússia, TomskBibliografia
- Jiao, X., Y. Liu, X. Cai, J. Wang, and P. Feng. 2021. Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: A review. J. Mater. Sci. 56:11605–11630. doi: 10.1007/s10853-021-06035-5.
- Thiers, L., A. S. Mukasyan, and A. Varma. 2002. Thermal explosion in Ni–Al system: Influence of reaction medium microstructure. Combust. Flame 131:198–209. doi: 10.1016/S0010-2180(02)00402-9.
- Biswas, A., and S. K. Roy. 2004. Comparison between the microstructural evolutions of two modes of SHS of NiAl: Key to a common reaction mechanism. Acta Mater. 52:257–270. doi: 10.1016/j.actamat.2003.08.018.
- Rogachev, A. S., S. G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N. V. Sachkova, M. D. Grapes, T. P. Weihs, and A. S. Mukasyan. 2016. Combustion in reactive multilayer Ni/Al nanofoils: Experiments and molecular dynamic simulation. Combust. Flame 166:158–169. doi: 10.1016/j.combustflame.2016.01.014.
- Shabouei, M., W. Subber, C. W. Williams, K. Matouš, and J. M. Powers. 2019. Chemo-thermal model and Gaussian process emulator for combustion synthesis of Ni/Al composites. Combust. Flame 207:153–170. doi: 10.1016/ j.combustflame.2019.05.038.
- Fan, Q., H. Chai, and Z. Jin. 2001. Dissolution–precipitation mechanism of self-propagating high-temperature synthesis of mononickel aluminide. Intermetallics 9:609–619. doi: 10.1016/S0966-9795(01)00046-2.
- Zhu, P., J. C. M. Li, and C. T. Liu. 2002. Reaction mechanism of combustion synthesis of NiAl. Mater. Sci. Eng. A — Struct. 329-331:57–68. doi: 10.1016/S0921-5093(01)01549-0.
- Morsi, K. 2001. Review: Reaction synthesis processing of Ni–Al intermetallic materials. Mater. Sci. Eng. A — Struct. 299:1–15. doi: 10.1016/s0921-5093(00)01407-6.
- Jiang, Y., Y. He, and H. Gao. 2021. Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties. J. Mater. Sci. Technol. 74:89–104. doi: 10.1016/j.jmst.2020.10.007.
- Miura, S., T. Ohashi, and Y. Mishima. 1997. Amount of liquid phase during reaction synthesis of nickel aluminides. Intermetallics 5:45–59. doi: 10.1016/S0966-9795(96)00065-9.
- Plazanet, L., and F. Nardou. 1998. Reaction process during relative sintering of NiAl. J. Mater. Sci. 33:2129–2136. doi: 10.1023/A:1004375304423.
- Hibino, A., S. Matsuoka, and M. Kiuchi. 2001. Synthesis and sintering of Ni Al intermetallic compound by combustion synthesis process. J. Mater. Process. Tech. 112:127–135. doi: 10.1016/s0924-0136(01)00558-1.
- Maznoy, A., A. Kirdyashkin, V. Kitler, and A. Solovyev. 2017. Combustion synthesis and characterization of porous Ni–Al materials for metal-supported solid oxide fuel cells application. J. Alloy. Compd. 697:114–123. doi: 10.1016/j.jallcom.2016.11.350.
- Cai, X., Z. Li, X. Jiao, J. Wang, X. Kang, P. Feng, F. Akhtar, and X. Wang. 2021. Preparation of porous NiAl intermetallic with controllable shape and pore structure by rapid thermal explosion with space holder. Met. Mater. Int. 27:4216–4224. doi: 10.1007/s12540-020-00904-5.
- Maznoi, A., and A. Kirdyashkin. 2014. Influence of initial parameters of reacting systems on the porosity structure of self-propagating high-temperature synthesis products. Combust. Explo. Shock Waves 50(1):60–67.
- Kirdyashkin, A., V. Kitler, V. Salamatov, R. Yusupov, and Yu. Maksimov. 2007. Capillary hydrodynamic phenomena in gas-free combustion. Shock Waves 43(6):645–653.
- Rogachev, A. S., A. Varma, and A. G. Merzhanov. 1993. The mechanism of self-propagating high-temperature synthesis of nickel aluminides, Part I: Formation of the product microstructure in a combustion wave. Int. J. Self-Propagating High-Temperature Synthesis 2:25–38.
- Mukasyan, A. S., and A. S. Rogachev. 2008. Discrete reaction waves: Gasless combustion of solid powder mixtures. Prog. Energ. Combust. 34:377–416. doi: 10.1016/j.pecs.2007.09.002.
- Rogachev, A. S., N. A. Kochetov, V. V. Kurbatkina, E. A. Levashov, P. S. Grinchuk, O. S. Rabinovich, N. V. Sachkova, and F. Bernard. 2006. Microstructural aspects of gasless combustion of mechanically activated mixtures. I. High-speed microvideorecording of the Ni–Al composition. Combust. Explo. Shock Waves 42(4):421–429.
- Rogachev, A. S., and A. S. Mukasyan. 2014. Combustion for material synthesis. CRC Press. 424 p. doi: 10.1201/b17842.
- Manukyan, K., N. Amirkhanyan, S. Aydinyan, V. Danghyan, R. Grigoryan, N. Sarkisyan, G. Gasparyan, R. Aroutiounian, and S. Kharatyan. 2010. Novel NiZr-based porous biomaterials: Synthesis and in vitro testing. Chem. Eng. J. 162:406–414. doi: 10.1016/j.cej.2010. 05.042.
- Cui, H., L. Cao, Y. Chen, and J. Wu. 2012. Unique microstructure of porous NiAl intermetallic compound prepared by combustion synthesis. J. Porous Mat. 19: 415–422. doi: 10.1007/s10934-011-9489-2.
- Bassani, P., E. Bassani, M. Coduri, P. Giuliani, A. Tuissi, and C. Zanotti. 2015. Influence of TiH addition on SHS porous shape memory alloy. Mater. Today — Proc. 2:S715–S718. doi: 10.1016/j.matpr.2015.07.382.
- Yeh, C. L., and W. E. Sun. 2016. Use of TiH as a reactant in combustion synthesis of porous Ti Si and Ti Si /TiAl intermetallics. J. Alloy. Compd. 669:66–71. doi: 10.1016/j.jallcom.2016.01.236.
- Maznoy, A., A. Kirdyashkin, V. Kitler, N. Pichugin, V. Salamatov, and K. Tcoi. 2019. Self-propagating high-temperature synthesis of macroporous B2 + L1 Ni–Al intermetallics used in cylindrical radiant burners. J. Alloy. Compd. 792:561–573. doi: 10.1016/j.jallcom.2019.04.023.
- Maznoy, A. S., A. I. Kirdyashkin, and N. S. Pichugin. 2018. Radiatsionnye gorelki tsilindricheskoy formy s maksimal’noy effektivnost’yu preobrazovaniya energii goreniya v izluchenie [Cylindrical radiant burners with maximal radiation]. Goren. Vzryv (Mosk.) — Combustion and Explosion 11:56–65. doi: 10.30826/CE18110208.
- Maznoy, A. S., I. A. Yakovlev, N. S. Pichugin, S. D. Zambalov, and K. A. Tcoi. 2018. Vliyanie strategii vvoda toplivno-vozdushnoy smesi na kharakteristiki tsilindricheskikh radiatsionnykh gorelok s tonkosloynym poristym izluchatelem [Effect of the design of gas supply system on the performance of cylindrical radiant burners]. Goren. Vzryv (Mosk.) — Combustion and Explosion 14:35–42. doi: 10.30826/CE21140305.
- Maznoy, A., N. Pichugin, A. Kirdyashkin, E. Yakovlev, I. Yakovlev, S. Zambalov, and A. Guschin. 2023. Predicting oxidation-limited lifetime of Ni–Al–Cr porous radiant burners made by combustion synthesis. J. Alloy. Compd. 934:167885. doi: 10.1016/j.jallcom.2022.167885.
- Kirdyashkin, A. I., R. M. Gabbasov, V. D. Kitler, and A. S. Maznoy. 2020. Eksperimental’noe issledovanie obzhigovoy pechi na printsipe fil’tratsionnogo goreniya gazov [Experimental investigation of the high-temperature sintering furnace based on filtration gas combustion]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13:49–61. doi: 10.30826/ce20130406.
- Okamoto, H., and T. B. Massalski. 1990. Binary alloy phase diagrams. Materials Park, OH: ASM International. 3 vols. 3611 p.
- Lewis, A. E., M. M. Seckler, H. Kramer, and G. Van Rosmalen. 2015. Industrial crystallization: Fundamentals and applications. Cambridge, U.K.: Cambridge University Press. 323 p. doi: 10.1017/cbo9781107280427.
- Subramanian, R. S. 1985. The Stokes force on a droplet in an unbounded fluid medium due to capillary effects. J. Fluid Mech. 153:389–400. doi: 10.1017/s0022112085001306.
- Rednikov, A. Y., Y. S. Ryazantsev, and M. G. Velarde. 1998. Drop motion with surfactant transfer in a homogeneous surrounding. Phys. Fluids 6:451. doi: 10.1063/1.868343.
- Kirdyashkin, A., V. Kitler, V. Salamatov, and R. Yusupov. 2008. Specific features of structural dynamics of high-temperature metallothermal processes with the FeO–Al–Al O system as an example. Combust. Explo. Shock Waves 44(1):71–75.
- Kupiec, K., and T. Komorowicz. 2010. Simplified model of transient radiative cooling of spherical body. Int. J. Therm. Sci. 49:1175–1182. doi: 10.1016/j.ijthermalsci. 2010.01.009.
- Halikia I., L. Zoumpoulakis, E. Christodoulou, and D. Prattis. 2001. Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis. Eur. J. Mineral Processing Environmental Protection 1:89–102.
- Gergely, V., D. C. Curran, and T. W. Clyne. 2003. The FOAMCARP process: Foaming of aluminium MMCs by the chalk–aluminium reaction in precursors. Compos. Sci. Technol. 63:2301–2310. doi: 10.1016/S0266-3538(03)00263-X.
- Jacob, K. T., and S. Srikanth. 1990. Physical chemistry of the reduction of calcium oxide with aluminum in vacuum. High Temp. Mater. Proc. 9:77–92. doi: 10.1515/ HTMP.1990.9.2-4.77/machinereadablecitation/ris.
- El-Sadek, M. H., K. El-Barawy, and I. M. Morsi. 2018. Production of calcium metal by aluminothermic reduction of Egyptian limestone ore. Can. Metall. Quart. 58:213–222. doi: 10.1080/00084433.2018.1544343.
Arquivos suplementares
