Combustion transfer through inert barriers in high-porosity nanotermites
- Authors: Kirilenko V.G.1, Dolgoborodov A.Y.1,2,3, Brazhnikov M.A.1
-
Affiliations:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Joint Institute for High Temperatures of the Russian Academy of Sciences
- National Research Nuclear University MEPhI
- Issue: Vol 16, No 3 (2023)
- Pages: 83-92
- Section: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/289630
- DOI: https://doi.org/10.30826/CE23160308
- EDN: https://elibrary.ru/MUTZCD
- ID: 289630
Cite item
Abstract
The paper presents the results of an experimental study using high-speed video recording of the combustion propagation through inert barriers in Al/CuO nanothermites placed in closed shells (tubes) made of quartz glass. Viscose and air gaps were used as inert barriers. When the luminous front (which the present authors associate with the burning rate) passes through the barrier made of viscose, its propagation velocity drops noticeably but after it enters the nanothermite, its propagation velocity recovers to the original value. As for the air gaps, when the luminous front expands into the air, its speed increases by a factor of 2–3, then the normal mode of propagation is established. The presence of air gaps in a tube with a thermite mixture makes it possible to significantly reduce the mass of this mixture with a slight decrease in the average burning rate compared to a completely filled tube of the same length.
Keywords
About the authors
Vladimir G. Kirilenko
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: vladkiril@gmail.com
Candidate of Science in physics and mathematics, senior research scientist
Russian Federation, MoscowAlexander Yu. Dolgoborodov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Joint Institute for High Temperatures of the Russian Academy of Sciences; National Research Nuclear University MEPhI
Email: aldol@ihed.ras.ru
Doctor of Science in physics and mathematics, chief research scientist, head of laboratory, teacher
Russian Federation, Moscow; Moscow; MoscowMichael A. Brazhnikov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: birze@inbox.ru
Candidate of Science in pedagogy, senior research scientist
Russian Federation, MoscowReferences
- Pantoya, M., and J. Granier. 2006. The effect of slow heating rates on the reaction mechanisms of nano and micron composite thermite reactions. J. Therm. Anal. Calorim. 85:37–43. doi: 10.1007/s10973-005-7342-z.
- Zarko, V. E., and A. A. Gromov, eds. 2016. Energetic nanomaterials: Synthesis, characterization, and application. Amsterdam: Elsevier. 485 p.
- Bhattacharya, S., A. K. Agarwal, T. Rajagopalan, and V. K. Patel, eds. 2019. Nano-energetic materials: Energy, environment and sustainability. 1st ed. Springer Nature Singapore Pte Ltd. 305 p.
- Yetter, R. A. 2021.Progress towards nanoengineered energetic materials. P. Combust. Inst. 38(1):57–81. doi: 10.1016/j.proci.2020.09.008.
- Polis, M., A. Stolarczyk, K. Glosz, T. Jarosz, and Quo Vadis . 2022. Nanothermite? A review of recent progress. Materials 15(9):3215. doi: 10.3390/ma15093215.
- Weismiller, M. R., J. Y. Malchi, R. A. Yetter, and T. J. Foley. 2009. Dependence of flame propagation on pressure and pressurizing gas for an Al/CuO nanoscale thermite. P. Combust. Inst. 32:1895–1903. doi: 10.1016/ j.proci.2008.06.191.
- Densmore, J. M., K. T. Sullivan, A. E. Gash, and J. D. Kuntz. 2014. Expansion behavior and temperature mapping of thermites in burn tubes as a function of fill length. Propell. Explos. Pyrot. 39:416–422. doi: 10.1002/ prep.201400024.
- Egan, G., and M. Zachariah. 2015. Commentary on the heat transfer mechanisms controlling propagation in nanothermites. Combust. Flame 162(7):2959–2961. doi: 10.1016/j.combustflame.2015.04.013.
- Baijot, V., M. Rouhani, C. Rossi, and A. Esteve. 2017. A multi-phase micro-kinetic model for simulating aluminum-based thermite reactions. Combust. Flame 180:10–19. doi: 10.1016/j.combustflame.2017.02.031.
- Jacob, R., D. Kline, and M. Zachariah . 2018. High speed 2-dimensional temperature measurements of nanothermite composites: Probing thermal vs. gas generation effects. J. Appl. Phys. 123(11). doi: 10.1063/1.5021890.
- Wang, Y., Ji Dai, J. Xu, Y. Shen, Ch. Wang, Y. Ye, and R. Shen. 2021. Experimental and numerical investigations of the effect of charge density and scale on the heat transfer behavior of Al/CuO nano-thermite. Vacuum 184. doi: 10.1016/j.vacuum.2020.109878.
- Dolgoborodov, A. Yu., V. G. Kirilenko, M. A. Brazhnikov, L. I. Grishin, M. L. Kuskov, and G. E. Valyano . 2022. Ignition of nanothermites by a laser diode pulse. Defence Technology 18(2):194–204. doi: 10.1016/j.dt.2021.01.006.
- Kirilenko, V. G., A. Yu. Dolgoborodov, M. A. Brazhnikov, L. I. Grishin, M. L. Kuskov, and G. E. Valyano . 2022. Osobennosti goreniya nanotermitov na osnove nanoalyuminiya pri lazernom initsiirovanii [Features of combustion of nanothermite based on nanoaluminum at laser initiation]. Goren. Vzryv (Mosk.) — Combustion and Explosion 15(1):82–97.
- Sanders, V., B. Asay, T. Foley, B. Tappan, A. Pacheco, and S. Son. 2007. Reaction propagation of four nanoscale energetic composites (Al/MoO , Al/WO , Al/CuO, and Bi O ). J. Propul. Power 23:707–714. doi: 10.2514/ 1.26089.
- Sullivan, K., and M. R. Zachariah. 2010. Simultaneous pressure and optical measurements of nanoaluminum thermites: Investigating the reaction mechanism. J. Propul. Power 26:467–472. doi: 10.2514/1.45834.
- Saceleanu, F., M. Idir, N. Chaumeix, and J. Z. Wen. 2018. Combustion characteristics of physically mixed 40 nm aluminum/copper oxide nanothermites using laser ignition. Front. Chem. 6:465. doi: 10.3389/fchem.2018.00465.
- Jabraoui, H., A. Esteve, M. Schoenitz, E. Dreizin, and C. Rossi. 2022. Atomic Scale insights into the first reaction stages prior to Al/CuO nanothermite ignition: Influence of porosity. ACS Appl. Mater. Inter. 14(25):29451–29461. doi: 10.1021/acsami.2c07069.
- Guen, M. Y., and A. V. Miller. 1961. Method for production of metal aerosols. SU Patent 814432.
- Kuskov, M. L., A. N. Zhigach, I. O. Leipunskii, A. N. Gorbachev, E. S. Afanasenkova, and O. A. Safronova . 2019. Combined equipment for synthesis of ultrafine metals and metal compounds powders via flow-levitation and crucible methods. IOP Conf. Ser. — Mat. Sci. 558:012022. doi: 10.1088/1757-899X/558/1/012022.
- Streletskii, A. N., I. V. Kolbanev, G. A. Vorobieva, A. Y. Dolgoborodov, V. G. Kirilenko, and B. D. Yankovskii . 2018. Kinetics of mechanical activation of Al/CuO thermite. J. Material Sci. 53(19):13550–13559. doi: 10.1007/ s10853-018-2412-3.
- Dolgoborodov, A. Yu., V. G. Kirilenko, A. N. Streletskii, I. V. Kolbanev, A. A. Shevchenko, B. D. Yankovskii, S. Y. Ananev, and G. E. Valyano . 2018. Mekhanoaktivirovanyy termitnyy sostav Al/CuO [Mechanoactivated thermite composition Al/CuO]. Goren. Vzryv (Mosk.) — Combustion and Explosion 11(3):117–124.
- Kirilenko, V. G., L. I. Grishin, A. Yu. Dolgoborodov, and M. A. Brazhnikov . 2020. Lazernoe initsiirovanie nanotermitov Al/CuO i Al/Bi O [Laser initiation of nanothermites Al/CuO and Al/Bi O ]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13(1):145–155.
- Li, Yong, Jian Li, Xian Liu, and Bei Wu. 2021. Test and analysis of the porosity of cotton fiber assembly. J. Eng. Fiber. Fabr. 16:1–7. doi: 10.1177/15589250211024225.
Supplementary files
