Optimization of fire-resistant and fire-thermal protective properties of intumescent composites using mathematical experimental planning

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the method of mathematical planning of the experiment, the formulation of a foaming polymer composite material based on an ethylene-vinyl acetate thermoplastic binder was optimized. To determine the dependence of the combustibility characteristics (maximum temperature increment and weight loss) of the composite on the content of components in its gas-coke-forming system, a regression model of a full factorial experiment was used using the completed matrix of the orthogonal central-composition plan (OCCP) of the two-factor model of the 2nd order experiment. By adjusting the composition of the gas-coke-forming system, consisting of ammonium phosphate, amine, and carbonate mineral, a slow-burning material with improved thermal insulation ability was obtained. For the studied composition, it was found that the one of the factors causing a decrease in combustibility and an increase in the fire resistance limit (up to 104 min) is the formation of a foamed mechanically strong coke-like structure, stable in a wide temperature range (300–800 C).

About the authors

Valentina V. Bogdanova

Research Institute for Physical Chemical Problems of the Belarusian State University

Author for correspondence.
Email: bogdanova@bsu.by

Doctor of Science in chemistry, professor, head of laboratory

Belarus, Minsk

Olga I. Kobets

Research Institute for Physical Chemical Problems of the Belarusian State University

Email: kobetsoi@mail.ru

Candidate of Science in chemistry, leading research scientist

Belarus, Minsk

Alexander S. Platonov

State Educational Establishment “University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus”

Email: alexpltn@mail.ru

Candidate of Science in physics and mathematics, associate professor, leading research scientist, Department of Scientific and Innovation Activity

Belarus, Minsk

Anna B. Perevoznikova

Educational Institution “Belarusian State Pedagogical University named after M. Tank”

Email: a.b.perevoznikova@gmail.com

lecturer

Belarus, Minsk

References

  1. Sobur’, S. V. 2008. Ognezashchita materialov i konstruktsiy [Fire protection of materials and structures]. Moscow: Pozhkniga. 200 p.
  2. Kosachev, A. A., and B. B. Kolchev. 2014. Primenenie protivopozharnykh muft [Application of fire couplings]. StroyPROFI 1(18):50–55. Available at: http://stroy-profi.info/archive/11481 (accessed January 28, 2014).
  3. Nenakhov, S. A., and V. P. Pimenova. 2010. Fiziko-khimiya vspenivayushchikhsya ognezashchitnykh pokrytiy na osnove polifosfata ammoniya. Obzor literatury [Physicochemistry of foaming fire-retardant coatings based on ammonium polyphosphate. Literature review]. Pozharovzryvobezopasnost’ [Fire and Explosion Safety] 19(8):11–58.
  4. Khalturinskiy, N. A., and T. A. Rudakova. 2013. O mekhanizme obrazovaniya ognezashchitnykh vspuchivayushchikhsya pokrytiy [On the mechanism of formation of fire-retardant intumescent coatings]. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering sciences] 8:220–227.
  5. Salmeia, K. A., J. Fage, S. Liang, and S. Gaan. 2015. An overview of mode of action and analytical methods for evaluation of gas phase activities of flame retardants. Polymers — Basel 7(3):504–526. doi: 10.3390/polym7030504.
  6. Alongia, J., Z. Hanb, and S. Bourbigot. 2015. Intumescence: Tradition versus novelty. A comprehensive review. Prog. Polym. Sci. 51:28–73. doi: 10.1016/j.progpolymsci.2015.04.010.
  7. Kablov, V. F., O. M. Novopol’ceva, V. G. Kochetkov, and A. G. Lapina . 2016. Osnovnye sposoby i mekhanizmy povysheniya ogneteplozashchitnoy stoykosti materialov [The main methods and mechanisms for increasing the fire and heat resistance of materials]. Izvestiya Volgogradskogo tekhnicheskogo universiteta [Proceedings of the VolgSTU] 4:46–60.
  8. Puri, R. G., and A. S. Khanna. 2017. Intumescent coatings: A review on recent progress. J. Coat. Technol. Res. 14(1):1–20. doi: 10.1007/s11998-016-9815-3.
  9. Rabe, S., Yu. Chuenban, and B. Schartel. 2017. Exploring the modes of action of phosphorus-based flame retardants in polymeric systems. Materials 10:455. doi: 10.3390/ma10050455.
  10. Kang, J., F. Takahashi, and J. S. T’ien. 2018. In situ thermal-conductivity measurements and morphological characterization of intumescent coatings for fire protection. J. Fire Sci. 36(1):1–19. doi: 10.1177/ 0734904118794955.
  11. Bogdanova, V. V., D. N. Arestovich, and V. P. Kirlica. 2017. Issledovanie osnovnykh retsepturnykh faktorov, okazyvayushchikh dominiruyushchee vliyanie na termoizoliruyushchuyu sposobnost’ i atmosferostoykost’ognezashchitnyhh pokrytiy [Study of the main recipe factors that have a dominant effect on the thermal insulation ability and weather resistance of fire-retardant coatings]. Vestsi Natsyyanal’nay akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk [Proceedings of the National Academy of Sciences of Belarus. Physical-technical series] 4:24–31.
  12. Bogdanova, V. V., and O. I. Kobets . 2018. Ogne-termozashchitnye svoystva termovspenivayushchikhsya kompozitov na osnove poliolefinov v zavisimosti ot prirody i soderzhaniya napolniteley [Fire-thermal protective properties of thermofoaming composites based on polyolefins depending on the nature and content of fillers]. Polimernye materialy i tekhnologii [Polymer Materials and Technologies] 4(4):64–71. doi: 10.32864/polymmattech-2018-4-4-64-71.
  13. Bogdanova, V. V., and O. I. Kobets. 2020. Issledovanie vliyaniya termicheskikh prevrashcheniy komponentov vspenivaemykh kompozitsiy na ikh ognetermozashchitnye svoystva [Study of the impact of thermal transformations of foamable composition components on their fire-thermal protection properties]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13(4):108–115. doi: 10.30826/CE20130411.
  14. Garashhenko, A. N., V. P. Rudzinskiy, and V. O. Kaledin. 2013. Obespechenie trebuemykh pokazateley pozharobezopasnosti konstruktsiy iz polimernykh materialov s pomoshch’yu ognezashchity [Ensuring the required indicators of fire safety of structures made of polymeric materials using fire protection]. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences] 8:143–149.
  15. Rudzinskiy, V. P., A. N. Garashchenko, and N. A. Garashchenko. 2013. Teplotekhnicheskie raschety dvumernykh temperaturnykh poley v konstruktsiyakh iz polimernykh kompozitov so vspuchivayushchimsya ognezashchitnym pokrytiem [Thermal engineering calculations of two-dimensional temperature fields in polymer composite structures with an intumescent fire retardant coating]. Pozharovzryvobezopasnost’ [Fire and Explosion Safety] 22(8):42–47.
  16. Garashhenko, A. N., A. A. Berlin, and A. A. Kul’kov. 2019. Sposoby i sredstva obespecheniya trebuemykh pokazateley pozharobezopasnosti konstruktsiy iz polimernykh kompozitov (obzor) [Ways and means of ensuring the required indicators of fire safety of structures made of polymer composites (review)]. Pozharovzryvobezopasnost’ [Fire and Explosion Safety] 28(2):9–30. doi: 10.18322/pvb/2019.28.02.9-30.
  17. GOST 12.1.044-89. 1989. Pozharovzryvoopasnost’ veshchestv i materialov [Fire and explosion hazard of substances and materials]. Moscow: Standards Publs. 99 p.
  18. GOST R 53306-2009. 2009. Uzly peresecheniya ograzhdayushchikh stroitel’nykh konstruktsiy truboprovodami iz polimernykh materialov. Metod ispytaniy na ognestoykost’ [Nodes of intersection of enclosing building structures with pipelines made of polymeric materials. Test method for fire resistance]. Moscow: Standartinform. 5 p.
  19. Volodarskiy, E. T., B. N. Malinovskiy, and Yu. M. Tuz. 1987. Planirovanie i organizatsiya izmeritel’nogo eksperimenta [Nodes of intersection of enclosing building structures with pipelines made of polymeric materials. Test method for fire resistance]. Kiev: Vishcha shkola. 280 p.
  20. Kononyuk, A. E. 2011. Osnovy nauchnykh issledovaniy (obshchaya teoriya eksperimenta) [Fundamentals of scientific research (general theory of experiment)]. Kiev: KTN. Vol. 2. 452 p.
  21. GOST 11.002-73. 1976. Prikladnaya statistika. Pravila otsenki anormal’nosti rezul’tatov nablyudeniy [Applied statistics. Rules for assessing the abnormality of the results of observations]. Moscow: Standards Publs. 24 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».