Oxidative pyrolysis of ethane under pulsed adiabatic compression
- Authors: Bilera I.V.1
-
Affiliations:
- A. V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
- Issue: Vol 16, No 3 (2023)
- Pages: 20-28
- Section: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/289469
- DOI: https://doi.org/10.30826/CE23160303
- EDN: https://elibrary.ru/CNWMHL
- ID: 289469
Cite item
Abstract
The oxidative pyrolysis of ethane has been studied in a rapid compression machine with a free flied piston over a range of temperatures 1100–1450 K. In the initial mixtures with a constant ethane content of 2 %(vol.), the oxygen content varied from 0 to 1.05 %(vol.). The ranges of conversion degrees of ethane were 6%–86% and of oxygen 8%–97%. The main (ethylene, hydrogen, methane, and CO) and secondary reaction products were determined. The composition of the mixture of products qualitatively corresponds to the products of ethane pyrolysis previously studied in the adiabatic compression reactor. It is found that an increase in the O2/C2H6 ratio in the studied range leads to a monotonic decrease in the residual ethane content, an increase in the residual oxygen content, and an increase in the degree of conversion of both initial components. As the O2/C2H6 ratio increases, the yields of H2, CO, CH4, acetylene, 1,3-butadiene, and some other hydrocarbons increase. The value of ethylene yield passes through a maximum approximately at .
About the authors
Igor V. Bilera
A. V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Author for correspondence.
Email: bilera@ips.ac.ru
Candidate of Science in chemistry, leading research scientist
Russian Federation, MoscowReferences
- Lapidus, A. S. 1972. Sovremennoe sostoyanie promyshlennykh sposobov proizvodstva atsetilena. Khimiya atsetilena. Tr. III Vsesoyuzn. konf. [The chemistry of acetylene. Proceedings of the 3rd All-Union Conference]. Ed. A. A. Petrov. Moscow: Nauka. 5–16.
- Passler, P., W. Hefner, K. Buckl, H. Meinass, A. Meiswinkel, H.-J. Wernicke, G. Ebersberg, R. Muller, J. Bassler, H. Behringer, and D. Mayer. 2012. Acetylene. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. 1: 277–326. doi: 10.1002/14356007.a01_097.pub3.
- Dubrovay, K. K., and A. B. Sheynman. 1936. Okislitel’nyy kreking [Oxidative cracking]. Moscow–Leningrad: ONTI NKTP SSSR. 393 p.
- Tmenov, D. N., and S. P. Gorislavets. 1978. Intensifikatsiya protsessov piroliza [Intensification of pyrolysis processes]. Kiev: Tekhnika. 192 p.
- Arutyunov, V. S. 2011. Okislitel’naya konversiya prirodnogo gaza [Oxidative reforming of natural gas]. Moscow: KRASAND. 640 p.
- Arutyunov, V. S., and R. N. Magomedov. 2012. Gas-phase oxypyrolysis of light alkanes. Russ. Chem. Rev. 81(9):790–822. doi: 10.1070/RC2012v081n09ABEH004267.
- Arutyunov, V. S., V. I. Savchenko, I. V. Sedov, A. V. Nikitin, R. N. Magomedov, and A. Yu. Proshina. 2017. Kinetic features and industrial prospects of the selective oxidative cracking of light alkanes. Russ. Chem. Rev. 86(1):47–74. doi: 10.1070/RCR4648.
- Cavani, F., N. Ballarini, and A. Cericola. 2007. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catal. Today 127:113–131. doi: 10.1016/j.cattod.2007.05.009.
- Najari, S., S. Saeidi, P. Concepcion, D. D. Dionysiou, S. K. Bhargava, A. F. Lee, and K. Wilson. 2021. Oxidative dehydrogenation of ethane: Catalytic and mechanistic aspects and future trends. Chem. Soc. Rev. 50(7):4564–4605. doi: 10.1039/D0CS01518K.
- Sampson, R. J. 1963. The reaction between ethane and oxygen at 600–630 . J. Chem. Soc. 5095–5106. doi: 10.1039/JR9630005095.
- Jones, J. H., T. E. Daubert, and M. R. Fenske. 1969. Oxidation and oxidative dehydrogenation of ethane and propane. Ind. Eng. Chem. Proc. DD. 8(1):17–25. doi: 10.1021/i260029a004.
- Taylor, J. E., and D. M. Kulich. 1973. Homogeneous gas-phase with a wall-less reactor. oxygen-ethane reaction. Pyrolyses. III. The a double reversal in oxygen and surface effects. Int. J. Chem. Kinet. 5(3):455–468. doi: 10.1002/kin.550050314.
- Sheverdenkin, E. V., V. M. Rudakov, V. I. Savchenko, V. S. Arutyunov, and O. V. Sokolov. 2004. Kinetics of partial oxidation of alkanes at high pressures: Oxidation of ethane and methane–ethane mixtures. Theor. Found. Chem. Eng. 38(3):311–315. doi: 10.1023/ B:TFCE.0000032194.61049.0e.
- Magomedov, R. N., A. Y. Proshina, and V. S. Arutyunov. 2013. Gas-phase oxidative cracking of ethane in a nitrogen atmosphere. Kinet. Catal. 54(4):383–393. doi: 10.1134/S0023158413040113.
- Burch, R., and E. M. Crabb. 1993. Homogeneous and heterogeneous contributions to the catalytic oxidative dehydrogenation of ethane. Appl. Catal. A — Gen. 97(1):49–65. doi: 10.1016/0926-860X(93)80066-Y.
- Choudhary V. R., and S. R. Mulla. 1997. Coupling of thermal cracking with noncatalytic oxidative conversion of ethane to ethylene. AIChE J. 43(6):1545–1550. doi: 10.1002/aic.690430516.
- Chen, Q., E. J. A. Schweitzer, P. F. Van Den Oosterkamp, R. J. Berger, C. R. H. De Smet, and G. B. Marin. 1997. Oxidative pyrolysis of ethane. Ind. Eng. Chem. Res. 36(8):3248–3251. doi: 10.1021/ie960585z.
- Kolbanovskiy, Yu. A., V. S. Shchipachev, N. Ya. Chernyak, et al. 1982. Impul’snoe szhatie gazov v khimii i tekhnologii [Impulsive compression of gases in chemistry and technology]. Moscow: Nauka. 240 p.
- Kolbanovskiy, Yu. A. 1989. Adiabatic compression in studies on the kinetics and mechanism of reactions involving fluorine-containing carbenes. Russ. Chem. Rev. 58(11):1024–1032. doi: 10.1070/ RC1989v058n11ABEH003494.
- Buravtsev, N. N., and Yu. A. Kolbanovsky. 1999. Intermediates of thermal transformations of perfluoro-organic compounds. New spectral data and reactions. J. Fluorine Chem. 96(1):35–42. doi: 10.1016/S0022-1139(98)00325-X.
- Sal’nikova, L. V., A. E. Semochkina, and I. V. Bilera. 2010. Degidrirovanie etana pri impul’snom pirolize i oksipirolize [Dehydrogenation of ethane during pulsed pyrolysis and oxypyrolysis]. Tezisy VIII Vseross. nauch.-tekhn. konf. “Aktual’nye problemy razvitiya neftegazovogo kompleksa Rossii” [8th All-Russian Scientific and Technical Conference “Actual Problems of Development of the Russian Oil and Gas Complex” Abstracts]. Moscow: RGUNG im. I. M. Gubkina. 1:281–282.
- Bilera, I. V. 2017. Vysokotemperaturnyy gomogennyy piroliz etana v reaktore adiabaticheskogo szhatiya [The high-temperature homogeneous pyrolysis of ethane in the adiabatic compression reactor]. Goren. Vzryv (Mosk.) — Combustion and Explosion 10(2):12–17.
- Bilera, I. V. 2020. Sopiroliz dimetilovogo efira i etana v usloviyakh adiabaticheskogo szhatiya [Copyrolysis of dimethyl ether and ethane under pulsed adiabatic compression]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13(4):20–28. doi: 10.30826/CE20130403.
- Buravtsev, N. N., L. S. German, A. S. Grigor’ev, Yu. A. Kolbanovskii, A. A. Ovsyannikov, and A. Yu. Volkonskii. 1993. Trifluoromethylfluorocarbene formation and reactions under C2F5SiF3 pulsed adiabatic compression pyrolysis. Mendeleev Commun. 3(4):133– 134. doi: 10.1070/MC1993v003n04ABEH000254.
- ScanView — an application and chromatogram database. Available at: https://community.agilent.com (accessed October 16, 2018).
- Heracleous, E., and A. A. Lemonidou. 2004. Homogeneous and heterogeneous pathways of ethane oxidative and non-oxidative dehydrogenation studied by temperature-programmed reaction. Appl. Catal. A — Gen. 269:123–135. doi: 10.1016/j.apcata.2004.04.007.
Supplementary files
