Clarification of the parameters of the installation for determining the explosion characteristics of dust–air mixtures
- Authors: Manzhos E.V.1, Korzhavin A.A.1, Kozlov Y.V.1, Namyatov I.G.1
-
Affiliations:
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 14, No 3 (2021)
- Pages: 98-108
- Section: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/288587
- DOI: https://doi.org/10.30826/CE21140309
- ID: 288587
Cite item
Abstract
At the V. V. Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, an installation has been designed for determining the characteristics of the explosion of dust–air mixtures in accordance with the regulatory document GOST 12.1.044-89 (p. 4.11). The installation makes it possible to determine the lower concentration limit of flame propagation, the minimum phlegmatizing concentration of the phlegmatizer, the minimum explosive oxygen content, as well as the maximum explosion pressure of dust–air mixtures. The need to determine such characteristics is caused by safety requirements when performing production processes associated with the formation of combustible dust and gas mixtures. The purpose of this work is to justify the choice of the design parameters of the ignition source, the time of the beginning of spraying, and the time of switching off the heating spiral which are the main parameters for the correct determination of the explosion indicators of dust–air mixtures. To achieve this goal, experimental studies of the material and design parameters of the heating spiral were carried out and their optimal values were selected. A theoretical description was given that satisfactorily describes the experimentally measured dynamics of the heating and cooling processes of the heating spiral. The moment of opening of the air supply valve, which determines the start time of spraying and the time of switching off the heating spiral, was justified.
About the authors
Evgeny V. Manzhos
V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: eugen.manzhos@kinetics.nsc.ru
junior research scirntist
Russian Federation, 3 Institutskaya Str., Novosibirsk 630090Alexey A. Korzhavin
V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
Email: korzh@kinetics.nsc.ru
Doctor of Science in technology, associate professor, head of the group of physics and chemistry of gas combustion
Russian Federation, 3 Institutskaya Str., Novosibirsk 630090Yaroslav V. Kozlov
V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
Email: yaroslav@kinetics.nsc.ru
junior research scientist
Russian Federation, 3 Institutskaya Str., Novosibirsk 630090Igor G. Namyatov
V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences
Email: inam@kinetics.nsc.ru
research scientist
Russian Federation, 3 Institutskaya Str., Novosibirsk 630090References
- Hartmann, I. 1954. Dust explosions in coal mines and industry. Sci. Mon. 79(2):97–108.
- Bartknecht, W. 1980. Explosionen: Ablauf und Schutzmassnahmen. Berlin – Heidelberg – New York: Springer-Verlag. 266 p.
- Korolchenko, A. Ya. 1986. Pozharovzryvoopasnost’ promyshlennoy pyli [Fire and explosion safety of industrial dust]. Moscow: Khimiya. 212 p.
- Cybulski, K., B. Malich, and A. Wieczorek. 2015. Evaluation of the effectiveness of coal and mine dust wetting. J. Sustain. Min. 14:83–92. doi: 10.1016/j.jsm.2015.08.012.
- Pejic, L. M., J. G. Torrent, N. F. A ñez, and J. M. M. Escobar. 2017. Prevention and protection against propagation of explosion in underground coal mines. J. Mining Institute 225:307–312. doi: 10.18454/PMI.2017.3.307.
- Portola, V. A., A. E. Ovchinnikov, S. A. Sin, and V. G. Igishev. 2018. Analiz avariynosti i pozharobezopasnosti ugol’nykh shakht [Coal mines accident rate and fire hazards analyses]. Vestnik nauchnogo tsentra po bezopasnosti rabot v ugol’noy promyshlennosti [Bulletin of the Scientific Center for Work Safety in the Coal Industry] 4:36–42.
- Portola, V. A. 2016. Otsenka kontsemtratsionnykh predelov vzryvchatosti ugol’noy pyli [Evaluation of concentration limits of explosive coal dust]. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of the Kuzbass State Technical University] 5:16–22.
- Poletaev, N. L. 2017. O probleme eksperimental’nogo obosnovaniya nizkoy vzryvoopasnosti goryuchey pyli v 20-litrovoy kamere [On the problem of experimental justification of low explosibility for dust/air mixture in the 20-L chamber]. Pozharovzryvobezopasnost’ [Fire and Explosion Safety] 26(6):5–20.
- Liu, T., Z. Cai, N. Wang, and Y. Li. 2020. WITHDRAWN: Experimental and numerical study on flame propagation characteristics of coal dust explosion in small-scale space. Alexandria Eng. J. doi: 10.1016/j.aej.2020.10.034.
- Addai, E. K., D. Gabel, and U. Krause. 2016. Models to estimate the lower explosion limits of dusts, gases and hybrid mixtures. Chem. Engineer. Trans. 48:313–318. doi: 10.3303/CET1648053.
- Shi, Shulei, Bingyou Jiang, and Xiangrui Meng. 2018. Assessment of gas and dust explosion in coal mines by means of fuzzy fault tree analysis. Int. J. Mining Science Technology 28(6):991–998. doi: 10.1016/j.ijmst.2018.07.007.
- Wang, Yan, Yingquan Qi, Xiangyang Gan, et al. 2020. Influences of coal dust components on the explosibility of hybrid mixtures of methane and coal dust. J. Loss Prevent. Proc. 67:104222. doi: 10.1016/j.jlp.2020.104222.
- Qi, Y., X. Gan, Z. Li, L. Li, Y. Wang, and W. Ji. 2021. Variation and prediction methods of the explosion characteristic parameters of coal dust/gas mixtures. Energies 14:264. doi: 10.3390/en14020264.
- Paleev, D. Y., A. M. Baklanov, S. N. Doubtsov, V. V. Za-maschikov, A. E. Kontorovich, A. A. Korzhavin, A. A. Onischuk, and P. A. Purtov. 2015. Vliyanie organicheskogo aerozolya v ugol’nykh shakhtakh na predel vosplameneniya metano-vozdushnoy smesi [The influence of coal dust nanoscale fraction on the explosiveness of coal–air-and-methane mixture]. Gornyy informatsionno-analiticheskiy byulleten’ [Mining Information and Analytical Bulletin] S7:231–237.
- Addai, E., D. Gabel, and U. Krause. 2016. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures. J. Hazard. Mater. 307:302–311. doi: 10.1016/j.jhazmat.2016.01.018.
- Onischuk, A., S. Dubtsov, A. Baklanov, S. Valiulin, P. Koshlyakov, D. Paleev, V. Mitrochenko, V. Zamashchikov, and A. Korzhavin. 2017. Organic nanoaerosol in coal mines: Formation mechanism and explosibility. Aerosol and Air Quality Research 17(7):1735–1745. doi: 10.4209/aaqr.2016.12.0533.
- Valiulin, S. V., A. A. Onischuk, A. M. Baklanov, A. A. Bazhina, D. Yu. Paleev, V. V. Zamashchikov, A. A. Korzhavin, and S. N. Dubtsov. 2020. Effect of coal mine organic aerosol on the methane/air lower explosive limit. Int. J. Coal Sci. Technol. 7:778–786. doi: 10.1007/s40789-020-00313-4.
- Valiulin, S. V., A. A. Onischuk, D. Yu. Paleev, V. V. Zamashchikov, A. A. Korzhavin, and V. M. Fomin. 2021. Influence of organic aerosol in coal mines on the ignition limit of methane–air mixture. Russ. J. Phys. Chem. B 15(2):291–298. doi: 10.1134/S199079312102024X.
- Lisakov, S. A., E. V. Sypin, A. N. Pavlov, and Yu. A. Galenko. 2018. Modelirovanie protsessa nestatsionarnogo goreniya metano-vozdushnoy smesi v ugol’nykh shakhtakh [Modeling of methane–air mixture nonstationary combustion process in coal mines]. Vestnik Nauchnogo tsentra po bezopasnosti rabot v ugol’noy promyshlennosti [Bulletin of the Scientific Center for the Safety of Work in the Coal Industry] 1:40–53.
- Manzhos, V. K., and B. Ya. Kolesnikov. 2021. Osnovnye kontseptsii promotirovaniya i ingibirovaniya goreniya [Basic concepts of combustion promotion and inhibition]. Gorenie i plazmokhimiya [Combustion and Plasma Chemistry] 19(1):3–15. doi: 10.18321/cpc411.
- Khudhur, D. A., M. W. Ali, and T. A. T. Abdullah. 2021. Mechanisms, severity and ignitability factors, explosibility testing method, explosion severity characteristics, and damage control for dust explosion: A concise review. J. Phys. Conf. Ser. 1892:012023. doi: 10.1088/1742-6596/1892/1/012023.
- Kikoin, I. K., ed. 1976. Tablitsy fizicheskikh velichin: spravochnik [Tables of physical quantities: Reference]. Moscow: Atomizdat. 1006 p.
- Sazonov, M. S., and S. I. Goloskokov. 2019. Issledovanie vzryvchatosti ugol’noy pyli razlichnogo dispersnogo sostava [Different dispersion coal dust explosibility study]. Vestnik Nauchnogo tsentra VostNII po promyshlennoy i ekologicheskoy bezopasnosti [Bulletin of Scientific Centre VostNII for Industrial and Environmental Safety] 1:5–13. doi: 10.25558/VOSTNII.2019.89.87.001.
- Gerashchenko, O. A., A. N. Gordov, A. K. Eremina, et al. 1989. Temperaturnye izmeneniya: Spravochnik [Temperature measurements. Reference book]. Ed. O. A. Gerashchenko. Kiev: Nauk. Dumka. 704 p.
- Vargaftik, N. B. 1972. Spravochnik po teplofizicheskim svoystvam gazov i zhidkostey [Handbook of thermophysical properties of gases and liquids]. Moscow: Nauka. 721 p.
Supplementary files
