Gasification of organic waste with ultrasuperheated steam and carbon dioxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A literature review on allothermal gasification of organic waste in steam and carbon dioxide environment at atmospheric pressure is presented. Two groups of technologies are considered, namely, low-temperature (500–1000 C) and high-temperature (above 1200 C). The existing low-temperature gasification technologies are shown to provide the syngas of relatively low quality, exhibit low efficiency and complex control of gas composition, and low yields of syngas. The main efforts to improve such technologies are directed at preprocessing of feedstocks and additional processing of the product syngas as well as increasing the reactivity of the feedstocks with the help of catalysts. Unlike low-temperature gasification, high-temperature plasma gasification provides high quality syngas, exhibits high process efficiency and easy control of gas composition, and high yields of syngas. However, arc and microwave plasma technologies require huge energy consumption as well as special construction materials and refractory lining for gasifier walls. Moreover, gasification of feedstocks in plasma reactors mainly occurs at temperatures of 1200–2000 C, so that the gas–plasma transition turns out to be an unclaimed but highly energy-intense intermediate stage. An environmentally friendly detonation gun technology for organic waste gasification is proposed and demonstrated as a more effective alternative.

About the authors

Sergey M. Frolov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: smfrol@chph.ras.ru

Doctor of Science in physics and mathematics, head of department, head of laboratory, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; professor, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Russian Federation, 4 Kosygin Str., Moscow 11999

References

  1. Higman, C., and M. Van der Burgt. 2005. Gasification. 1st ed. Gulf Professional Publishing. 391 p.
  2. Rezaiyan, J., and N. Cheremisinoff. 2005. Gasification technologies. A primer for engineers and scientists. 1st ed. Boca Raton, FL: CRC Press, Taylor & Francis Group. 360 p.
  3. Basu, P. 2010. Biomass gasification and pyrolysis: Practical design and theory. Burlington, MA: Academic Press. 376 p.
  4. Bain, R. L., and K. Broer. 2011. Gasification. Thermochemical processing of biomass: Conversion into fuels, chemicals and power. Ed. R. C. Brown. 1st ed. John Wiley & Sons. 47–77.
  5. Chen, W.-H., J. Peng, and X. T. Bi. 2015. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sust. Energ. Rev. 44:847–866.
  6. Quaak, P., H. Knoef, and H. Stassen. 1999. Energy from biomass: A review of combustion and gasification technologies. World Bank Technical Papers. Washington, D.C.: World Bank. Paper 422. doi: 10.1596/0-8213-4335-1.
  7. Santoleri, J. J., J. Reynolds, and L. Theodore. 2000. Introduction to hazardous waste incineration. 2nd ed. New York, NY: Wiley. 656 p.
  8. Ahrenfeldt, J., T. P. Thomsen, U. Henriksen, and L. R. Clausen. 2013. Biomass gasification cogeneration — a review of state-of-the-art technology and near future perspectives. Appl. Therm. Eng. 50:1407–1417.
  9. Ismail, T. M., and M. A. El-Salam. 2017. Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification. Appl. Therm. Eng. 112:1460–1473.
  10. Karl, J., and T. Proll. 2018. Steam gasification of biomass in dual fluidized bed gasifiers: A review. Renew. Sust. Energ. Rev. 98:64–78.
  11. Abanades, S., S. Rodat, and H. Boujjat. 2021. Solar thermochemical green fuels production: A review of biomass pyro-gasification, solar reactor concepts and modelling methods. Energies 14:1494.
  12. Bartocci, P., M. Zampilli, G. Bidini, and F. Fantozzi. 2018. Hydrogen-rich gas production through steam gasification of charcoal pellet. Appl. Therm. Eng. 132:817–823.
  13. Wu, H., Q. Liu, Z. Bai, G. Xie, J. Zheng, and B. Su. Thermodynamics analysis of a novel steam/air biomass gasification combined cooling, heating and power system with solar energy. Appl. Therm. Eng. 164:114494.
  14. Jayaraman, K., I. Goekalp, and S. Jeyakumar. 2017. Estimation of synergetic effects of CO2 in high ash coal-char steam gasification. Appl. Therm. Eng. 110:991–998.
  15. Zheng, X., Z. Ying, B. Wang, and C. Chen. 2018. Hydrogen and syngas production from municipal solid waste (MSW) gasification via reusing CO2. Appl. Therm. Eng. 144:242–247.
  16. Darivakis, G. S., J. B. Howard, and W. A. Peters. 1990. Release rates of condensables and total volatiles from rapid devolatilization of polyethylene and polystyrene. Combust. Sci. Technol. 74:267–281.
  17. Ki-Bum, P., J. Yong-Seong, G. Begum, and K. JooSik. 2019. Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy 166:343–351.
  18. Chen, Z., X. Zhang, L. Gao, and S. Li. 2017. Thermal analysis of supercritical water gasification of coal for power generation with partial heat recovery. Appl. Therm. Eng. 111:1287–1295.
  19. Jared, P., J. Ciferno, and J. Marano. June 2020. Benchmarking biomass gasification technologies for fuels, chemicals and hydrogen production. U.S. Department of Energy, National Energy Technology Laboratory. 65 p.
  20. Rauch, R., J. Hrbek, and H. Hofbauer. 2014. Biomass gasification for synthesis gas production and applications of syngas. WIRES Energy Environ. 3:343– 362.
  21. Ma, W., T. Wenga, F. J. Frandsen, B. Yan, and G. Chen. 2020. The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies. Prog. Energ. Combust. 76:100789.
  22. Holladay, J. D., J. Hu, D. L. King, and Y. Wang. 2009. An overview of hydrogen production technologies. Catal. Today 139:244–260.
  23. Ruj, B., and S. Ghosh. 2014. Technological aspects for thermal plasma treatment of municipal solid waste — a review. Fuel Process. Technol. 126:298–308.
  24. Mazzoni, L., I. Janajreh, S. Elagroudy, and C. Ghenai. 2020. Modeling of plasma and entrained flow co-gasification of MSW and petroleum sludge. Energy 196:117001.
  25. Lahijani, P., Z. A. Zainal, A. R. Mohamed, and M. Mohammadi. 2014. Microwave-enhanced CO2 gasification of oil palm shell char. Bioresource Technol. 158:193–200.
  26. He, L., Y. Ma, C. Yue, et al. 2021. Transformation mechanisms of organic S/N/O compounds during microwave pyrolysis of oil shale: A comparative research with conventional pyrolysis. Fuel Process. Technol. 212:106605.
  27. Arena, U. 2012. Process and technological aspects of municipal solid waste gasification: A review. Waste Manage. 32:625–639.
  28. Westinghouse, W. P. C. 2013. Plasma gasification is the next generation of energy from waste technology. USEA Annual Meeting. Washington, D.C. 1–16.
  29. Wnukowski, M. 2014. Decomposition of tars in microwave plasma — preliminary results. Ecol. Eng. 15:23–28.
  30. Cothran, C. 2015. Identifying likely late-stage UK WTE projects. Syngas Technologies Conference. Colorado Springs, CO: Global Syngas Technologies Council. 13 p.
  31. Messenger, B. 2016. Air products to ditch plasma gasification waste to energy plants in Teesside. Waste Management World.
  32. Simkins, G., and L. Walsh. 2016. Reasons for TV1 failure revealed. Twickenham. ENDS Report.
  33. Bebelin, I. N., A. G. Volkov, A. N. Gryaznov, and S. P. Malyshenko. 1997. Development and investigation of an experimental hydrogen–oxygen steam generator of 10-MW thermal capacity. Therm. Eng. 44(8):657–662.
  34. Sariev, V. N., V. A. Veretennikov, and V. V. Troyachenko. Sistema kompleksnoy bezotkhodnoy pererabotki tverdykh bytovykh i promyshlennykh otkhodov [System of complex recycling of solid domestic and industrial waste]. Patent of Russian Federation No. 2648737 dated 28.03.2018. Priority dated 12.08.2016.
  35. Frolov, S. M., V. A. Smetanyuk, K. A. Avdeev, and S. A. Nabatnikov. Sposob polucheniya sil’no peregretogo para i ustroystvo detonatsionnogo parogeneratora (varianty) [Method for obtaining highly overheated steam and detonation steam generator device (options)]. Patent of Russian Federation No. 2686138 dated 24.04.2019. Priority dated 26.02.2018.
  36. Saxena, S. C., and C. K. Jotshi. 1996. Management and combustion of hazardous wastes. Prog. Energ. Combust. 22(5):401–425.
  37. Frolov, S. M., V. A. Smetanyuk, and S. A. Nabatnikov. Sposob gazifikatsii uglya v sil’no peregretom vodyanom pare i ustroystvo dlya ego osushchestvleniya [Method of gasification of coal in a highly overheated water vapor and device for its implementation]. Patent of Russian Federation No. 2683751 dated 01.04.2019. Priority dated 24.05.2018 (WO2019/226074 A1 dated 28.11.2019).
  38. Frolov, S. M., S. A. Nabatnikov, K. V. Diesperov, and E. R. Achildiev. Sposob obezzarazhivaniya letuchey zoly, obrazuyushcheysya pri szhiganii otkhodov, i ustroystvo dlya ego osushchestvleniya [Method for decontamination of a fly ash formed during burning of wastes and a device for its implementation]. Patent of Russian Federation No. 2739241 dated 22.12.2020, priority dated 11.06.2020.
  39. Roy, G. D., S. M. Frolov, A. A. Borisov, and D. W. Netzer. 2004. Pulse detonation propulsion: Challenges, current status, and future perspective. Prog. Energ. Combust. 30(6):545–672.
  40. Bykovskii, F. A., and S. A. Zhdan. 2013. Nepreryvnaya spinovaya detonatsiya [Continuous spinning detonation]. Novosibirsk: Lavrentiev Institute of Hydrodynamics Publs. 422 p.
  41. Rauch, R., J. Hrbek, and H. Hofbauer. 2013. Biomass gasification for synthesis gas production and applications of the syngas. WIRES Energy Environ. doi: 10.1002/wene.97.
  42. Mahinpey, N., and A. Gomez. 2016. Review of gasification fundamentals and new findings: Reactors, feedstock, and kinetic studies. Chem. Eng. Sci. 148:14–31.
  43. Awasthi, A. K., et al. 2017. Plastic solid waste utilization technologies: A review. IOP Conf. Ser. — Mat. Sci. 263:022024.
  44. Zhang, Y., P. Xu, S. Liang, B. Liu, Y. Shuai, and B. Li. 2019. Exergy analysis of hydrogen production from steam gasification of biomass: A review. Int. J. Hydrogen Energ. 44(28):14290–14302.
  45. Inayat, A., M. Raza, Z. Khan, C. Ghenai, M. Aslam, and M. S. M. Ayoub. 2020. Flowsheet modeling and simulation of biomass steam gasification for hydrogen production. Chem. Eng. Technol. 43(4):649–660.
  46. Indrawan, N., A. Kumar, M. Moliere, K. A. Sallam, and R. L. Huhnke. 2020. Distributed power generation via gasification of biomass and municipal solid waste: A review. J. Energy Inst. 93:2293–2313.
  47. Zhan, L., L. Jiang, Y. Zhang, B. Gao, and Z. Xu. 2020. Reduction, detoxification and recycling of solid waste by hydrothermal technology: A review. Chem. Eng. J. 390:124651.
  48. Siwal,S. S., Q. Zhang, C. Sun, S. Thakur, V. K. Gupta, and V. K. Thakur. 2020. Energy production from steam gasification processes and parameters that contemplate in biomass gasifier — A review. Bioresource Technol. 297:122481.
  49. Galvagno, S., S. Casu, G. Casciaro, M. Martino, A. Russo, and S. Portofino. 2006. Steam gasification of Refuse-Derived Fuel (RDF): Influence of process temperature on yield and product composition. Energ. Fuel 20:2284–2288.
  50. Galvagno, S., G. Casciaro, S. Casu, M. Martino, C. Mingazzini, A. Russo, and S. Portofino. 2009. Steam gasification of tire waste, poplar, and refuse-derived fuel: A comparative analysis. Waste Manage. 29:678–689.
  51. Umeki, K., K. Yamamoto, T. Namioka, and K. Yoshikawa. 2010. High temperature steam-only gasification of woody biomass. Appl. Energ. 87:791–798.
  52. Pieratti, E., M. Baratieri, S. Ceschini, L. Tognana, and P. Baggio. 2011. Syngas suitability for solid oxide fuel cells applications produced via biomass steam gasification process: Experimental and modeling analysis. J. Power Sources 196(23):10038–10049.
  53. Soni, C. G., A. K. Dalai, T. Pugsley, and T. Fonstad. 2011. Steam gasification of meat and bone meal in a two-stage fixed-bed reactor system. Asia-Pac. J. Chem. Eng. 6:71– 77.
  54. Portofino, S., A. Donatelli, P. Iovane, et al. 2013. Steam gasification of waste tyre: Influence of process temperature on yield and product composition. Waste Manage. 33(3):672–678.
  55. Wilk, V., and H. Hofbauer. 2013. Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel 107:787–799.
  56. Pilon, G., and J.-M. Lavoie. 2013. Pyrolysis of switchgrass (Panicum virgatum L.) at low temperatures within N2 and CO2 environments: Product yield study. ACS Sustain. Chem. Eng. 1:198–204.
  57. Guizani, C., F. J. Escudero Sanz, and S. Salvador. 2014. Effects of CO on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel 116:310–320.
  58. Sadhwani, N., S. Adhikari, and M. R. Eden. 2016. Biomass gasification using carbon dioxide: Effect of temperature, CO2/C ratio, and the study of reactions influencing the process. Ind. Eng. Chem. Res. 55:2883–2891.
  59. Eshun, J., L. Wang, E. Ansah, A. Shahbazi, K. Schimmel, V. Kabadi, and S. Aravamudhan. 2017. Characterization of the physicochemical and structural evolution of biomass particles during combined pyrolysis and CO gasification. J. Energy Inst. 92(1):82–93. doi: 10.1016/j.joei.2017.11.003.
  60. Minkova, V., S. P. Marinov, R. Zanzi, et al. 2000. Thermochemical treatment of biomass in a flow of steam or in a mixture of steam and carbon dioxide. Fuel Process. Technol. 61(1):45–52.
  61. Kraft, S., F. Kirnbauer, and H. Hofbauer. 2017. CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input. Powder Technol. 190:408–420.
  62. Eri, Q., J. Peng, and X. Zhao. 2018. CFD simulation of biomass steam gasification in a fluidized bed based on a multi-composition multi-step kinetic model. Appl. Therm. Eng. 129:1358–1368.
  63. Yan, L., Y. Cao, H. Zhou, and B. He. 2018. Investigation on biomass steam gasification in a dual fluidized bed reactor with the granular kinetic theory. Bioresource Technol. 269:384–392.
  64. Qi, T., T. Lei, B. Yan, et al. 2019. Biomass steam gasification in bubbling fluidized bed for higher–H syngas: CFD simulation with coarse grain model. Int. J. Hydrogen Energ. 44:6448–6460.
  65. Yang, S., F. Fan, Y. Wei, et al. 2020. Three-dimensional MP-PIC simulation of the steam gasification of biomass in a spouted bed gasifier. Energ. Convers. Manage. 210:112689.
  66. Frolov, S. M. 2016. Vliyanie turbulentnosti na srednyuyu skorost’ khimicheskikh prevrashcheniy: obzor [The effect of turbulence on the average rate of chemical transformations: A review]. Goren. Vzryv (Mosk.) — Combustion and Explosion 9(1):43–58.
  67. Billaud, J., S. Valin, M. Peyrot, and S. Salvador. 2016. Influence of H2O, CO2 and O2 addition on biomass gasification in entrained flow reactor conditions: Experiments and modelling. Fuel 166:166–178.
  68. Shie, J. L., F. J. Tsou, K. L. Lin, and C. Y. Chang. 2010. Bioenergy and products from thermal pyrolysis of rice straw using plasma torch. Bioresource Technol. 101:761–768.
  69. Hlina, M., M. Hrabovsky, T. Kavka, and M. Konrad. 2014. Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Manage. 34:63–66.
  70. Agon, N., M. Hrabovsky, O. Chumak, et al. 2016. Plasma gasification or refuse derived fuel in a single-stage system using different gasifying agents. Waste Manage. 47:246–255.
  71. Hrabovsky, M., M. Hlina, V. Kopecky, A. Maslani, O. Zivny, P. Krenek, and O. Hurba. 2017. Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem. Plasma P. 37(3):739–762.
  72. Wang, M., M. Mao, M. Zhang, et al. 2019. Highly efficient treatment of textile dyeing sludge by CO2 thermal plasma gasification. Waste Manage. 90:29–36.
  73. Vecten, S., M. Wilkinson, N. Bimbo, R. Dawson, and B. M. J. Herbert. 2021. Hydrogen-rich syngas production from biomass in a steam microwave-induced plasma gasification reactor. Bioresource Technol. 337:125324. doi: 10.1016/j.biortech.2021.125324.
  74. Piatkowski, N., C. Wieckert, and A. Steinfeld. 2009. Experimental investigation of a packed-bed solar reactor for the steam gasification of carbonaceous feedstocks. Fuel Process. Technol. 90:360–366.
  75. Frolov, S. M., F. S. Frolov, and V. A. Smetanyuk. 16.10.2014. Detonation forming method and device for the implementation thereof. Patent WO/2016/060582 A1, B21D 26/08 (2006.01), published on 21.04.2016.
  76. Frolov, S. M., and F. S. Frolov. 19.02.2013. Device for fuel combustion in a continuous detonation wave. Patent WO 2014/129920 A1, F23R 7/00, published on 28.08.2014.
  77. Frolov, S. M., V. A. Smetanyuk, I. O. Shamshin, A. S. Koval’, F. S. Frolov, and S. A. Nabatnikov. 2020. Cyclic detonation of the ternary gas mixture propane–oxygen–steam for producing highly superheated steam. Dokl. Phys. Chem. 490(2):14–17. doi: 10.1134/S0012501620020025.
  78. Frolov, S. M., V. S. Aksenov, K. A. Avdeev, A. A. Borisov, V. S. Ivanov, A. S. Koval’, S. N. Medvedev, V. A. Smetanyuk, F. S. Frolov, and I. O. Shamshin. 2013. Teplovye ispytaniya impul’sno-detonatsionnoy gazovoy gorelki bez prinuditel’nogo okhlazhdeniya [Thermal testing of a pulsed detonation burner without forces cooling]. Goren. Vzryv (Mosk.) — Combustion and Explosion 6:98–103. =1
  79. Frolov, S. M., V. A. Smetanyuk, I. O. Shamshin, A. S. Koval’, F. S. Frolov, and S. A. Nabatnikov. 2019. Poluchenie sil’no peregretogo vodyanogo para s pomoshch’yu tsiklicheskoy detonatsii troynoy gazovoy smesi “propan – kislorod – vodyanoy par” [Generation of highly superheated steam by pulsed detonation of the ternary gas “propane–oxygen–steam” mixture]. Goren. Vzryv (Mosk.) — Combustion and Explosion 12(4):95–103. =1
  80. Frolov, S. M., V. A. Smetanyuk, I. O. Shamshin, I. A. Sadykov, A. S. Koval’, and F. S. Frolov. 2021. Production of highly superheated steam by cyclic detonations of propane and methane–steam mixtures with oxygen for waste gasification. Appl. Therm. Eng. 183(1):116195. doi: 10.1016/j.applthermaleng.2020.116195.
  81. Frolov, S. M., V. S. Aksenov, A. V. Dubrovskii, A. E. Zangiev, V. S. Ivanov, S. N. Medvedev, and I. O. Shamshin. 2015. Chemiionization and acoustic diagnostics of the process in continuous- and pulse-detonation combustors. Dokl. Phys. Chem. 465(1):273–278.
  82. Frolov, S. M., V. A. Smetanyuk, and S. S. Sergeev. 2020. Reactor for waste gasification with highly superheated steam. Dokl. Phys. Chem. 495(2):191–195. doi: 10.1134/S0012501620120039.
  83. Morin, C., C. Chauveau, and I. G kalp. 2000. Droplet vaporisation characteristics of vegetable oil derived biofuels at high temperatures. Exp. Therm. Fluid Sci. 21(1-3):41–50. doi: 10.1016/s0894-1777(99)00052-7.
  84. Basevich, V. Ya., S. N. Medvedev, S. M. Frolov, F. S. Frolov, B. Basara, and P. Priesching. 2016. Makrokineticheskaya model’ dlya rascheta emissii sazhi v dizele [Macrokinetic model for calculation of soot emissions in Dieselengine]. Goren. Vzryv (Mosk.) — Combustion and Explosion 9(3):36–46.

Supplementary files

Supplementary Files
Action
1. JATS XML

Statistics

Views

Abstract: 19

PDF (Russian): 1

Dimensions

Article Metrics

Metrics Loading ...

PlumX

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».