Ignition of gas mixture by combustion products of thermite composition Al/CuO

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents new experimental results on the dynamics of the cloud of explosive combustion products of the mechanoactivated composition Al/CuO. The parameters of the cloud of combustion products depending on the mass of the mixture were determined using the methods of high-speed photoregistration, pyrometric measurements, and photovoltaic and electrocontact sensors. Various methods of ignition and formation of the product flow are considered. Optimal conditions for the formation of a torch for ignition of combustible gas–air mixtures have been determined.

Full Text

Restricted Access

About the authors

Boris D. Yankovskii

Joint Institute for High Temperatures of the Russian Academy of Sciences

Author for correspondence.
Email: yiy2004@mail.ru

Candidate of Science in physics and mathematics, senior research scientist

Russian Federation, 13-2 Izhorskaya Str., Moscow 125412

Sergey Yu. Ananev

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: serg.ananev@gmail.com

Candidate of Science in physics and mathematics, research scientist

Russian Federation, 13-2 Izhorskaya Str., Moscow 125412

Alexander Yu. Dolgoborodov

Joint Institute for High Temperatures of the Russian Academy of Sciences; N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; National Research Nuclear University MEPhI

Email: aldol@ihed.ras.ru

Doctor of Science in physics and mathematics, chief research scientist, head of laboratory, teacher

Russian Federation, 13-2 Izhorskaya Str., Moscow 125412; 4 Kosygin Str., Moscow 119991; 31 Kashirskoe Sh., Moscow 115409

Leonid I. Grishin

Joint Institute for High Temperatures of the Russian Academy of Sciences; National Research Nuclear University MEPhI

Email: lenya-grishin@mail.ru

junior research scientist, Ph.D. student

Russian Federation, 13-2 Izhorskaya Str., Moscow 125412; 31 Kashirskoe Sh., Moscow 115409

Galina S. Vakorina

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: vakorinags@ihed.ras.ru

Candidate of Science in physics and mathematics, leading engineer

Russian Federation, 13-2 Izhorskaya Str., Moscow 125412

References

  1. Dolgoborodov, A. Yu. 2015. Mechanically activated oxidizer–fuel energetic composites. Combust. Explo. Shock Waves 51(1):86–99.
  2. Dreizin E. L., and M. Schoenitz. 2017. Mechanochemically prepared reactive and energetic materials: A review. J. Mater. Sci. 52(20):11789–11809.
  3. Streletskii, A. N., M. V. Sivak, and A. Yu. Dolgoborodov. 2017. Nature of high reactivity of metal/solid oxidizer nanocomposites prepared by mechanoactivation: A review. J. Mater. Sci. 52(20):11810–11825.
  4. Dolgoborodov, A. Yu., V. G. Kirilenko, A. N. Streletskii, I. V. Kolbanev, A. A. Shevchenko, B. D. Yankovskii, S. Y. Ananev, and G. E. Val’yano. 2018. Mehanoaktivirovanyy termitnyy sostav Al/CuO [Mechanoactivated thermite composition Al/CuO]. Goren. Vzryv (Mosk.) — Combustion and Explosion 11(3):117–124.
  5. Polak, L. S., A. A. Ovsyannikov, D. I. Slovetsky, and F. B. Wurzel. 1975. Teoreticheskaya i prikladnaya plazmokhimiya [Theoretical and applied plasma chemistry]. Moscow: Nauka. 304 p.
  6. Kondratiev, V. N., and E. E. Nikitin. 1981. Khimicheskie protsessy v gazakh [Chemical processes in gases]. Moscow: Higher School. 264 p.
  7. Lawton, J., and F. J. Weinberg. 1969. Electrical aspects of combustion. Oxford, U.K.: Clarendon Press. 419 p.
  8. Ananev, S. Y., A. Yu. Dolgoborodov, and B. D. Yankovskii. 2017. Dinamika razleta produktov goreniya mekhanoaktivirovannoy smesi alyuminiya s oksidom medi [Expansion dynamics of combustion products of a mechanically activated mixture of aluminum with copper oxide]. Goren. Vzryv (Mosk.) — Combustion and Explosion 10(4):81–85.
  9. Bratton, K. R., C. Woodruffa, L. L. Campbell, R. J. Heaps, and M. L. Pantoya. 2020. A closer look at determining burning rates with imaging diagnostics. Opt. Laser. Eng. 124:105841.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 Schemes of experimental assemblies for the formation of a thermite mixture combustion torch: 1 — a weighed portion of the thermite mixture; 2 — point of initiation; 3 — cloud of products; 4 — electrical contact sensor; 5 — channel; 6 — target; Mcm — mass of the sample; Einit — spark energy; dchannel — channel diameter; Lchannel — channel length; linit — distance from the initiation point to the open end of the channel; and Lmix — length of the mixture charge in the channel

Download (67KB)
3. Figure 2 A typical photograph (a) and graphical representation of the expansion dynamics of the luminous area during burning of a mixture sample in free space: 1 — 0.06 g; 2 — 0.25; 3 — 0.75, and 4 — 1.5 g (b)

Download (95KB)
4. Figure 3 Expansion dynamics of the luminous area in time: 1 — 0.06 g; 2 — 0.25; 3 — 0.75, and 4 — 1.5 g

Download (40KB)
5. Figure 4 Rate of expansion of the luminous area depending on the weight of the sample: 1 — dV/dt = −0,6M2 + 2,1M; and 2 — dV/dt = 1,5M

Download (30KB)
6. Figure 5 A typical photograph of a quasi0cylindrical torch of mixture combustion (0.06 g). The mixture sample was placed in a shell with a depth of 2 mm with one free surface (a); and dynamics of linear expansion (b) and volume increase (c) of the luminous area at different energies of electrospark initiation: 1 — 120mJ; and 2 — 20mJ

Download (185KB)
7. Figure 6 Dynamics of expansion of the luminous area (a) and the increase in the torch volume (b) depending on the location of initiation point along the channel depth

Download (61KB)
8. Figure 7 The breakdown-burning traces of the flow of reacting mixture particles on a 0.3-millimeter thick polymer target

Download (67KB)
9. Figure 8 Photographs of ignition process of propane–butane gas mixture: (a) the initial stage of the initiation process in the chamber; and (b) radiation recorded outside the chamber with the release and afterburning of propane–butane–air mixture outside the chamber

Download (2MB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).