Soot formation during pyrolysis of ethylene with additions of methanol and butanol

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Soot formation during pyrolysis of ethylene with the addition of alcohols (methanol and butanol) behind shock waves in the temperature range 2009–2524 K and pressure 2.56–3.58 bar has been investigated experimentally. Temperature dependences of optical density were measured by laser extinction at a wavelength of 633 nm and the size of carbon nanoparticles was measured by laser-induced incandescence. Temperature dependences of the induction times for the condensed phase appearance were also obtained. It has been shown that addition of methanol and butanol accelerates and increases the soot yield. The observed promoting effect on soot formation is stronger with the addition of butanol than methanol. The kinetic reasons for the influence of methanol and butanol on ethylene pyrolysis are discussed.

Full Text

Restricted Access

About the authors

Alexander V. Eremin

Joint Institute for High Temperatures of the Russian Academy of Sciences

Author for correspondence.
Email: eremin@jiht.ru

Doctor of Science in physics and mathematics, professor, head of laboratory

Russian Federation, 13-2 Izhorskaya Str., Moscow 125412

Mayya R. Korshunova

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: mayya_korshunova_95@mail.ru

junior research scientist

Russian Federation, 13-2 Izhorskaya Str., Moscow 125412

Ekaterina Yu. Mikheyeva

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: ekaterina.mikheyeva@gmail.com

Candidate of Science in physics and mathematics, senior research scientist

Russian Federation, 13-2 Izhorskaya Str., Moscow 125412

References

  1. Yao, M., H. Wang, Z. Zheng, and Y. Yue. 2010. Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions. Fuel 89:2191–2201. doi: 10.1016/j.fuel.2010.04.008.
  2. Ni, T., S. B. Gupta, and R. J. Santoro. 1994. Suppression of soot formation in ethene laminar diffusion flames by chemical additives. Symposium (International) on Combustion 25:585–592. doi: 10.1016/S0082-0784(06)80689-2.
  3. Xu H., C. Yao, G. Xu, Z. Wang, and H. Jin. 2013. Experimental and modelling studies of the effects of methanol and ethanol addition on the laminar premixed low-pressure n-heptane/toluene flames. Combust. Flame 160:1333–1344. doi: 10.1016/j.combustflame.2013.02.018.
  4. Zhou, M., F. Yan, X. Zhong, L. Xu, and Y. Wang. 2021. Sooting characteristics of partially-premixed flames of ethanol and ethylene mixtures: Unravelling the opposing effects of ethanol addition on soot formation in non-premixed and premixed flames. Fuel 291:120089. doi: 10.1016/j.fuel.2020.120089.
  5. Yang, S. S., and O• . L. Gu•lder. 2021. Ethanol supplement increases soot yields in nitrogen-diluted laminar ethylene diffusion flames at pressures from 3 to 5 bar. Combust. Flame 227:1–10. doi: 10.1016/j.combustflame.2020.12.039.
  6. Eremin, A. V., E. V. Gurentsov, R. N. Kolotushkin, and E. Yu. Mikheyeva. 2021. Dependence of soot primary particle size on the height above a burner in target ethylene/air premixed flame. Combust. Sci. Technol. Published online 04 Mar 2021. doi: 10.1080/00102202.2021.1894138.
  7. Frenklach, M., D. Clary, W. C. Gardiner, and S. E. Stein. 1986. Effect of fuel structure on pathways to soot. Symposium (International) on Combustion 21:1067–1076. doi: 10.1016/S0082-0784(88)80337-0.
  8. Bauerle, St., Y. Karasevich, St. Slavov, D. Tanke, M. Tappe, Th. Thienel, and H. Gg. Wagner. 1994. Soot formation at elevated pressures and carbon concentrations in hydrocarbon pyrolysis. Symposium (International) on Combustion 25:627–634. doi: 10.1016/S0082-0784(06)80694-6.
  9. De Iuliis, S., N. Chaumeix, M. Idir, and C.-E. Paillard. 2008. Scattering/extinction measurements of soot formation in a shock tube. Exp. Therm. Fluid Sci. 32:1354–1362. doi: 10.1016/j.expthermflusci.2007.11.008.
  10. Agafonov, G. L., I. V. Bilera, P. A. Vlasov, I. V. Zhil’tsova, Yu. A. Kolbanovskii, V. N. Smirnov, and A. M. Tereza. 2016. Unified kinetic model of soot formation in the pyrolysis and oxidation of aliphatic and aromatic hydrocarbons in shock waves. Kinet. Katal. 57(5):557–572. doi: 10.1134/S0023158416050013.
  11. Frenklach, M., and T. Yuan. 1987. Effect of alcohol addition on shock-initiated formation of soot from benzene. 16th Symposium (International) on Shock Tubes and Waves Proceedings. 487–493.
  12. Alexiou, A., and A. Williams. 1996. Soot formation in shock-tube pyrolysis of toluene, toluene–methanol, toluene–ethanol, and toluene–oxygen mixtures. Combust. Flame 104:51–65. doi: 10.1016/0010-2180(95)00004-6.
  13. Agafonov, G. L., I. Naydenova, P. A. Vlasov, and J. Warnatz. 2007. Detailed kinetic modeling of soot formation in shock tube pyrolysis and oxidation of toluene and n-heptane. P. Combust. Inst. 31:575–583. doi: 10.1016/j.proci.2006.07.191.
  14. Eremin, A., E. Gurentsov, and E. Mikheyeva. 2015. Experimental study of temperature influence on carbon particle formation in shock wave pyrolysis of benzene and benzene–ethanol mixtures. Combust. Flame 162:207–215. doi: 10.1016/j.combustflame.2014.09.015.
  15. Eremin, A., E. Mikheyeva, and I. Selyakov. 2018. Influence of methane addition on soot formation in pyrolysis of acetylene. Combust. Flame 193:83–91. doi: 10.1016/j.combustflame.2018.03.007.
  16. Yan, F., Lei. Xu, Y. Wang, S. Park, S. M. Sarathy, and H. C. Suk. 2019. On the opposing effects of methanol and ethanol addition on PAH and soot formation in ethylene counterflow diffusion flames. Combust. Flame 202: 228–242. doi: 10.1016/j.combustflame.2019.01.020.
  17. Sarathy, S., S. Vranckx, K. Yasunaga, M. Mehl, P. O -Bwald, W. Metcalfe, C. Westbrook, W. Pitz, K. Kohse-Ho•inghaus, R. Fernandes, and H. Curran. 2012. A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust. Flame 159:2028–2055. doi: 10.1016/j.combustflame.2011.12.017.
  18. Li, Y,. J. Zhao, T. D. Calvin Laurent, and G. Wu. 2021. Development of a skeletal combustion mechanism for natural gas engine using n-butanol–diesel blend as pilot fuel. Fuel 305:121567. doi: 10.1016/j.fuel.2021.121567.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 Time histories of extinction signal for 5% C2H4 + 1% C4H9OH + 94% Ar mixture, T5 = 2146 K, and P5 = 3.11 bar and the procedure of determining the induction time

Download (301KB)
3. Figure 2 Temperature dependences of the optical density measured at reaction times 0.75 (a) and 1.5 ms (b) in ethylene and ethylene–methanol mixtures: 1 — 5% C2H4 in Ar; 2 — 5% C2H4 + 0.5% CH3OH in Ar; and 3 — 5% C2H4 + 1% CH3OH in Ar

Download (80KB)
4. Figure 3 Temperature dependences of the optical density measured at reaction times 0.75 (a) and 1.5 ms (b) in ethylene and ethylene–butanol mixtures: 1 — 5% C2H4 in Ar; 2 — 5% C2H4 + 0.5% C4H9OH in Ar; and 3 — 5% C2H4 + 1% C4H9OH in Ar

Download (77KB)
5. Figure 4 Temperature dependences of soot nanoparticle sizes measured at reaction time 1.5 ms in ethylene, ethylene–methanol (a), and ethylene–butanol (b) mixtures: 1 — PEM 5% C2H4 in Ar; 2 — 5% C2H4 in Ar; 3 — 5% C2H4+0.5% CH3OH in Ar; 4 — 5% C2H4 + 1% CH3OH in Ar; 5 — 5% C2H4 + 0.5% C4H9OH in Ar; and 6 — 5% C2H4 + 1% C4H9OH in Ar

Download (79KB)
6. Figure 5 Temperature dependences of induction times of condensed phase appearance in ethylene, ethylene–methanol (a), and etylene–butanol (b) mixtures. Signs — experimental results and curves — approximations: 1 — 5% C2H4 in Ar; 2 — 5% C2H4 + 0.5% CH3OH in Ar; 3 — 5% C2H4 + 1% CH3OH in Ar; 4 — 5% C2H4 + 0.5% C4H9OH in Ar; and 5 — 5% C2H4 + 1% C4H9OH in Ar

Download (85KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).