Influence of methane, benzene, and CH3, CH2, and CH radicals on the formation of soot particles during pyrolysis of highly diluted mixtures of acetylene with argon

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers the effect of additives of methane, benzene, and CH3, CH2, and CH radicals on the formation of soot particles during pyrolysis of highly diluted mixtures of acetylene with argon. Direct comparison of the results of detailed kinetic simulations on soot particle formation during pyrolysis of the mixtures of acetylene, benzene, and methane with argon has been performed using the unified kinetic model of soot formation with the results of the authors’ own experiments in a shock tube behind reflected shock waves. The obtained good agreement between the results of kinetic simulations and experimental results was the basis for conducting numerical experiments for highly diluted mixtures at elevated pressures which made it possible both to maintain the concentration of carbon atoms in the mixtures and to minimize the temperature change during pyrolysis and soot particle formation.

Full Text

Restricted Access

About the authors

Pavel A. Vlasov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; National Research Nuclear University MEPhI

Author for correspondence.
Email: iz@chph.ras.ru

Doctor of Science in physics and mathematics, leading research scientist, assistant professor

Russian Federation, 4 Kosygin Str., Moscow 119991; 31 Kashirskoe Sh., Moscow 115409

Vladimir N. Smirnov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: vns1951@yandex.ru

Doctor of Science in physics and mathematics, chief research scientist

Russian Federation, 4 Kosygin Str., Moscow 119991

Artur R. Akhunyanov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: jkratos69@yandex.ru

research scientist

Russian Federation, 4 Kosygin Str., Moscow 119991

Gennadii L. Agafonov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: agafonov@chph.ras.ru

senior research scientist

Russian Federation, 4 Kosygin Str., Moscow 119991

Emmanuel Busillo

I. M. Gubkin Russian State University of Oil and Gas

Email: emmanuel.busillo@gmail.com

magister

Russian Federation, 65 Leninsky Prosp., Moscow 119991

References

  1. Agafonov, G. L., I. V. Bilera, P. A. Vlasov, I. V. Zhil’tsova, Yu. A. Kolbanovskii, V. N. Smirnov, and A. M. Tereza. 2016. Unified kinetic model of soot formation in the pyrolysis and oxidation of aliphatic and aromatic hydrocarbons in shock waves. Kinet. Catal. 57(5):557–572.
  2. Agafonov, G. L., D. I. Mikhailov, V. N. Smirnov, A. M. Tereza, P. A. Vlasov, and I. V. Zhiltsova. 2016. Shock tube and modeling study of chemical ionization in the oxidation of acetylene and methane mixtures. Combust. Sci. Technol, 188(11-12):1815–1830. doi: 10.1080/00102202.2016.1211861.
  3. Vlasov, P. A., I. V. Zhiltsova, V. N. Smirnov, A. M. Tereza, G. L. Agafonov, and D. I. Mikhailov. 2018. Chemical ionization of n-hexane, acetylene, and methane behind reflected shock waves. Combust. Sci. Technol. 190(1):57–81. doi: 10.1080/00102202.2017.1374954.
  4. Eremin, A., E. Mikheyeva, and I. Selyakov. 2018. Influence of methane addition on soot formation in pyrolysis of acetylene. Combust. Flame 193:83–91.
  5. Drakon, A., A. Eremin, E. Mikheyeva, Bo Shu, M. Fikri, and C. Schulz. 2018. Soot formation in shock-wave-induced pyrolysis of acetylene and benzene with H2, O2, and CH4 addition. Combust. Flame 198:158–168.
  6. Eremin, A., and E. Mikheyeva. 2019. The role of methyl radical in soot formation. Combust. Sci. Technol. 191(12):2226–2242. doi: 10.1080/00102202.2018.1551892.
  7. Li, Z., H. M. F. Amin, P. Liu, Yu Wang, S. H. Chung, and W. L. Roberts. 2018. Effect of dimethyl ether (DME) addition on sooting limits in counterflow diffusion flames of ethylene at elevated pressures. Combust. Flame 197:463–470.
  8. Li, Z., P. Liu, P. Zhang, Yu Wang, H. He, S. H. Chung, and W. L. Roberts. 2020. Role of dimethyl ether in incipient soot formation in premixed ethylene flames. Combust. Flame 216:271–279.
  9. Drakon, A., A. Eremin, M. Korshunova, and E. Mikheyeva. 2021. PAH formation in the pyrolysis of benzene and dimethyl ether mixtures behind shock waves. Combust. Flame 232:111548. doi: 10.1016/j.combustflame.2021.111548.
  10. Agafonov, G. L., P. A. Vlasov, and V. N. Smirnov. 2011. Soot formation in the pyrolysis of benzene, methyl-benzene, and ethylbenzene in shock waves. Kinet. Catal. 52(3):358–370.
  11. Stupochenko, E. V., S. A. Losev, and A. I. Osipov. 1965. Relaksatsionnye protsessy v udarnykh volnakh [Relaxation processes in shock waves]. Moscow: Nauka. 328 p.
  12. Haynes, B. S., and H. G. Wagner. 1981. Soot formation. Prog. Energ. Combust. 7(4):229–273.
  13. Agafonov, G. L., I. V. Bilera, P. A. Vlasov, Yu. A. Kolbanovskii, V. N. Smirnov, and A. M. Tereza. 2015. Soot formation during the pyrolysis and oxidation of acetylene and ethylene in shock waves. Kinet. Catal. 56(1):12–30.
  14. Wang, H., X. You, A. V. Joshi, S. G. Davis, A. Laskin, F. Egolfopoulos, and C. K. Law. 2007. USC Mech Version II. High temperature combustion reaction model of H2/CO/C1–C4 compounds. Available at: http://ignis.usc.edu/USC-Mech_II.htm (accessed May 2007).
  15. Skj o th-Rasmussen, M. S., P. Glarborg, M. 0stberg, J. T. Johannessen, H. Livbjerg, A. D. Jensen, and T. S. Christensen. 2004. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor. Combust. Flame 136:91–128.
  16. Richter, H., S. Granata, W. H. Green, and J. B. Howard. 2005. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. P. Combust. Inst. 30:1397–1405.
  17. Frenklach, M., and J. Warnatz. 1987. Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame. Combust. Sci. Technol. 51:265–283.
  18. Wang, H., E. Dames, B. Sirjean, D. A. Sheen, R. Tangko, and A. Violi. 2010. A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures. JetSurF version 2.0. Available at: http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/index.html (accessed February 21, 2022).
  19. Correa, C., H. Niemann, B. Schramm, and J. Warnatz. 2000. Reaction mechanism reduction for higher hydrocarbons by the ILDM method. P. Combust. Inst. 28:1607–1614.
  20. Hansen, N., S. J. Klippenstein, P. R. Westmoreland, T. Kasper, K. Kohse-Hoinghaus, J. Wang, and T. A. Cool. 2008. A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames. Phys. Chem. Chem. Phys. 10:366–374.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 Temperature dependences of the soot yield during pyrolysis of amixture of acetylene with argon (0.05 C2H2 + 0.95Ar), p5 = 4.5 bar: 1 — results of the present authors’ experiments in reflected shock waves; and 2 — results of the present authors’ kinetic calculations using the unified kinetic model of soot formation

Download (294KB)
3. Figure 2 Temperature dependences of the soot yield during pyrolysis of a mixture of benzene with argon (0.0105C6H6 +0.9895 Ar), p5 = 3.0 bar: 1 — results of the present authors’ experiments in reflected shock waves; and 2 — results of the present authors’ kinetic calculations using the unified kinetic model of soot formation

Download (239KB)
4. Figure 3 Temperature dependences of soot yield during pyrolysis of mixtures of methane with argon (triangles — 0.05 CH4 + 0.95Ar; and squares — 0.1 CH4 +0.9Ar), p5 = 4.5–6.7 bar: 1 — results of the present authors’ experiments in reflected shock waves; and 2 — results of the present authors’ kinetic calculations using the unified kinetic model of soot formation

Download (277KB)
5. Figure 4 Temperature dependences of the soot yield during pyrolysis of a mixture of acetylene with argon (1 — 0.03 C2H2 + 0.97Ar), acetylene–methane with argon (2 — 0.02 C2H2 + 0.02CH4 +0.96 Ar) and acetylene–methyl radicals with argon (3 — 0.02 C2H2 + 0.02CH3 +0.96 Ar), p5 = 3 bar

Download (56KB)
6. Figure 5 Temperature dependences of the soot yield during pyrolysis of a mixture of acetylene with argon (1 — 0.003 C2H2 + 0.997 Ar), acetylene–methane with argon (2 — 0.002 C2H2 + 0.002 CH4 + 0.996 Ar), and acetylene–methyl radicals with argon (3 — 0.002C2H2 +0.002 CH3 + 0.996Ar), p5 = 30 bar

Download (61KB)
7. Figure 6 Temperature dependences of the soot yield during pyrolysis of a mixture of acetylene with argon (1 — 0.0003 C2H2 +0.9997 Ar), acetylene–methane with argon (2 — 0.0002 C2H2 + 0.0002 CH4 +0.9996 Ar), and acetylene–methyl radicals with argon (3 — 0.0002 C2H2 + 0.0002 CH3 + 0.9996 Ar), p5 = 300 bar

Download (328KB)
8. Figure 7 Temperature dependences of the soot yield during pyrolysis of a mixture of acetylene with argon (1 — 0.0003 C2H2 +0.9997 Ar), acetylene–CH with argon (2 — 0.0002 C2H2 + 0.0002 CH + 0.9996 Ar), and acetylene–benzene with argon (3 — 0.0002 C2H2 + 0.00003334 C6H6 + 0.99976666 Ar), p5 = 300 bar

Download (300KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).