Obtaining of isothermal characteristics and equation of state parameters for petn by the methods of reaction molecular dynamics and themodynamics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The isothermal compression of an unreacting pentaerythritol tetranitrate (PETN) single crystal has been investigated using molecular dynamics (MD) method in the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package with the reactive force field (ReaxFF) in the pressure range up to 30 GPa. The values of the compression modulus coefficient K0=9.6 GPa and the derivative of the compression modulus K0 with respect to pressure K0'=8.0 were obtained based on MD simulation. These values can be used as parameters of the 3rd order Birch–Murnaghan thermal equation. The coefficients of the equation of state (EoS) in the Mie–Gruneisen form were fitted based on the obtained isotherms and experimental data. The authors used the method for determination the isochoric-isothermal potential of solids in the form of Einstein’s quasi-harmonic approximation. The obtained EoS can be used to simulate the thermophysical properties of matter including those under static and shock-wave compression. Verification of the results showed good agreement with the experimental data in a wide range of pressure and temperature changes including at the shock Hugoniot.

About the authors

Sergey A. Gubin

National Research Nuclear University MEPhI

Author for correspondence.
Email: gubin_sa@mail.ru

(b. 1945) — Doctor of Science in physics and mathematics, professor, head of department

Russian Federation, 31 Kashirskoe Sh., Moscow 115409

Sandra A. Kozlova

National Research Nuclear University MEPhI; National Research Center “Kurchatov Institute”

Email: sandra969@yandex.ru

(b. 1992) — engineer, National Research Center “Kurchatov Institute”; engineer, National Research Nuclear University MEPhI

Russian Federation, 31 Kashirskoe Sh., Moscow 115409; 1 Kurchatov Sq., Moscow 123098

Irina V. Maklashova

National Research Nuclear University MEPhI

Email: ivmaklashova@mephi.ru

(b. 1975) — senior lecturer

Russian Federation, 31 Kashirskoe Sh., Moscow 115409

References

  1. The classical molecular dynamics package LAMMPS. 2004. Available at: http://lammps.sandia.gov (accessed May 22, 2022).
  2. Van Duin, A. Department of Mechanical Engineering. Available at: http://www.engr.psu.edu/adri/Home.aspx (accessed May 22, 2022).
  3. Budzien, J., A. P. Thompson, and S. V. Zybin. 2009. Reactive molecular dynamics simulations of shock through a single crystal of pentaerythritol tetranitrate. J. Phys. Chem. B 113(40):13142–13151. doi: 10.1021/jp9016695.
  4. Zybin, S. V., W. I. Goddard, P. Xu, A. V. Duin, et al. 2010. Physical mechanism of anisotropic sensitivity in pentaerythritol tetranitrate from compressive-shear reaction dynamics simulations. Appl. Phys. Lett. 96(8):081918. 3 p. doi: 10.1063/1.3323103.
  5. Landerville, A. C., I. I. Oleynik, and C. T. White. 2009. Reactive molecular dynamics of hypervelocity collisions of PETN molecules. J. Phys. Chem. 113:12094–12104. doi: 10.1021/jp905969y.
  6. Shan, T. R., and A. P. Thompson. 2014. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void. J. Phys. Conf. Ser. 500(17):172009. doi: 10.1088/1742-6596/ 500/17/172009.
  7. Liu, L., Y. Liu, S. V. Zybin, H. Sun, and W. A. Goddard. 2011. Correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. J. Phys. Chem. 115(40):11016–11022. doi: 10.1021/jp201599t.
  8. Strachan, A., A. C. T. van Duin, D. Chakraborty, S. Dasgupta, and W. A. Goddard. 2003. Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Phys. Rev. 91:098301-1–098301-4. doi: 10.1103/PhysRevLett.91.098301.
  9. Olinger, B., P. M. Halleck, and H. H. Cady. 1975. The isothermal linear and volume compression of pentaerythritol tetranitrate (PETN) to 10 GPa (100 kbar) and the calculated shock compression. J. Chem. Phys. 62(11):4480–4483.
  10. The Cambridge Crystallographic Data Centre (CCDC). Available at: https://www.ccdc.cam.ac.uk (accessed May 22, 2022).
  11. Yoo, C., H. Choong-Shik, W. M. Howard, and N. Holmes. 1998. Equations of state of unreacted high explosives at high pressures. 11th Detonation Symposium (International) Proceedings. Aspen, CO. 951–957.
  12. Zharkov, V. N., and V. A. Kalinin. 1968. Uravneniya sostoyaniya tverdykh tel pri vysokikh davleniyakh i temperaturakh [Equations of state of solids at high pressures and temperatures]. Moscow: Nauka. 312 p.
  13. Molodets, A. M., M. A. Molodets, and S. S. Nabatov. 2000. Thermodynamic potentials of carbon. Combust. Explo. Shock Waves 36(2):240–245.
  14. Burcat, A., and B. Ruscic. 2005. Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Argonne National Laboratory by The University of Chicago.
  15. Fan, J., F. Yan, Z. Zhaoyang, and J. Zhao. 2021. Thermal properties of energetic materials from quasi-harmonic first-principles calculations. J. Phys. — Condens. Mat. 33(27):275702. doi: 10.1088/1361-648X/abfc11.
  16. Gonzalez, J. M., A. C. Landerville, and I. I. Oleynik. 2017. Vibrational and thermophysical properties of PETN from first principles. AIP Conf. Proc. 1793:070009. doi: 10.1063/1.4971597.
  17. Dobratz, B. M. 1976. Properties of chemical explosives and explosives stimulants. Livermore, CA: LLNL.
  18. Marsh, S. P. 1980. LASL shock Hugoniot data. Los Angeles, CA: University of California Press. 674 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).