Determination of the explosion delay time during laser initiation of energy-intensive compounds
- Authors: Alibaev A.F.1, Assovsky I.G.1, Dmitrienko D.B.1, Kuznetsov G.P.1, Melik-Gaykazov G.V.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Issue: Vol 14, No 1 (2021)
- Pages: 77-82
- Section: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/286611
- DOI: https://doi.org/10.30826/CE21140109
- ID: 286611
Cite item
Abstract
A method for recording light flashes during the initiation of an explosion in energy-intensive materials by a laser monopulse is proposed. Two methods of measuring the explosion delay are implemented. In the first, the photocell is installed on the back side of the test sample and luminocity is recorded in the infrared range (> 700 nm). On the register diagram, two separate peaks are clearly observed corresponding to the moment of generation (1064 nm) and the expansion of the explosion products. In the second, two photocells are used: the first one is located similarly and the second one is located on the side, in front of the sample. Luminocity is recorded in the range of 400–440 nm. The direct and scattered (explosion products) light fluxes emitted by the discharge of a pulsed pump lamp are measured. The delay is determined by the time shift of the signals of both photocells. The delay times for the selected chemical compound were 10 and 20 µs for monopulses with an energy of ∼50 and ∼ 60 mJ, respectively. The time of expansion of the explosion products is estimated in the interval from the beginning to the peak of the photocurrent. The specified value was ∼ 35 µs and did not depend on the initiation energy.
Keywords
About the authors
Alexander F. Alibaev
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: alibaevalexander@yandex.ru
Research Engineer
Russian Federation, 4, Kosygin St., Moscow, 119991Igor G. Assovsky
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: assov@chph.ras.ru
доктор физико-математических наук, заведующий лабораторией
Russian Federation, 4, Kosygin St., Moscow, 119991Daniil B. Dmitrienko
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: daniildinoz@yandex.ru
Research Engineer
Russian Federation, 4, Kosygin St., Moscow, 119991Gennady P. Kuznetsov
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: kuznetsov-47@bk.ru
Junior Researcher
Russian Federation, 4, Kosygin St., Moscow, 119991Georgy V. Melik-Gaykazov
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: marsh@chph.ras.ru
Candidate of Science in Physics and Mathematics, Senior Engineer
Russian Federation, 4, Kosygin St., Moscow, 119991References
- Karabanov, Y. F., and V. K. Bobolev. 1981. Zazhiganie initsiiruyushchikh vzryvchatykh veshchestv impul’som lazernogo izlucheniya [Experimental study of laser pulse ignition of explosives. Dokl. Akad. Nauk SSSR 256(5):1152–1155.
- Aleksandrov, E. I., and V. P. Tsipilev.1984. Effect of the pulse length on the sensitivity of lead azide to laser radiation. Combust. Explo. Shock Waves 20(6):690– 694.
- Korepanov, V. I., V. M. Lisitsyn, V. I. Oleshko, and V. P. Tsipilev. 2006. Kinetics and mechanism of explosive decomposition of heavy metal azides. Combust. Explo. Shock Waves 42(1):94–106.
- Lisitsyn, V. M., and V. P. Tsipilev, G. Damamme, and D. Malis. 2011. Effect of the laser radiation wavelength on the energy threshold of initiation of heavy metal azides. Combust. Explo. Shock Waves 47(5):591–600.
- Kriger, V. G., A.V. Kalenskii, and A. A. Zvekov. 2010. Determining the onset of mechanical failure of silver azide crystals initiated by a laser pulse. Combust. Explo. Shock Waves 46(1):60–63.
- Kalenskii, A. V., A. A. Zvekov, M. V. Anan’eva, V. G. Kriger, V. P. Tsipilev, and A. V. Razin. 2015. Spatial and temporal characteristics of detonation wave propagation in silver azide. Combust. Explo. Shock Waves 51(3):353–357.
- Aduev, B. P., D. R. Nurmukhametov, V. P. Tsipilev, and R. I. Furega. 2013. Effect of ultrafine Al–C particle additives on the PETN sensitivity to radiation exposure. Combust. Explo. Shock Waves 49(2):215–218.
- Aduev, B. P., D. R. Nurmukhametov, N. V. Nelyubina, R. Yu. Kovalev, A. P. Nikitin, A. N. Zaostrovskii, and Z. R. Ismagilov. 2016. Laser initiation of compositions based on PETN with submicron coal particles. Combust. Explo. Shock Waves 52(5):593–599.
- Kondilenko, I. I., P. A. Korotkov, and A. I. Khizhnyak. 1984. Fizika lazerov [Physics of lasers]. Visha Shkola. 232 p.
- Rokhlin, G. N. 1991. Razryadnye istochniki sveta [Discharge light sources]. 2nd ed. Moscow: Energoatomizdat. 720 p.
- Volkenstein, M. V. 1951. Molekulyarnaya optika [Molecular optics]. Moscow–Leningrad: GITTL. 744 p.
- Ivanov, A. P. 1969. Optika rasseivayushchikh sred [Optics of scattering media]. Science and technology. 592 p.
- Chechik, N. O., S.M. Feinstein, and T. M. Lifshitz. 1957. Elektronnye umnozhiteli [Electronic tubes]. Gostekhizdat. 576 p.
- Ilyushin, M. A., I. V. Tselinskii, and A. V. Cerny. 1997. Svetochuvstvitel’nye vzryvchatye veshchestva i sostavy i ikh initsiirovanie lazernym monoimpul’som [Light-sensitive explosive substances and preparations and initiating laser monopulse]. Ross. Khim. Zh. 41(4):81–88.
- Joas, M., T. M. Klapotke, J. Stierstosrfer, and N. Szimhardt. 2013. Synthesis and characterization of various photosensitive copper(II) complexes with 5-(1methylhydrazinyl)-1H-tetrazole as ligand and perchlorate, nitrate, dinitramide, and chloride as anions. Chem. — Eur. J. 19(30):9995–10003.
Supplementary files
