Characteristics of microexplosive dispersion of gel fuel particles ignited in a high-temperature air medium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An experimental study of the characteristics of the processes occurring during the ignition and combustion of single particles (10 mg) of typical gel fuel in a high-temperature air environment was carried out using a software and hardware complex consisting of a high-speed video camera, LED spotlight. The group of fuel compositions is prepared on the basis of oil-filled cryogels without and with 30 %(wt.) addition of solid finely dispersed components (coal particles, Si, and Cu). Polyvinyl alcohol (PVA) was used as an organic polymer thickener (10 %(wt.) in an aqueous solution). Fuel compositions are characterized by microexplosive dispersion of particles under conditions of intense heating. By varying air temperature in the range of 600–1000 °C, the velocities of movement of fine fragments after microexplosive dispersion of a droplet of fuel melt were determined.

About the authors

Dmitrii O. Glushkov

National Research Tomsk Polytechnic University

Author for correspondence.
Email: dmitriyog@tpu.ru

Candidate of Science in physics and mathematics, assistant professor, Heat Mass Transfer Laboratory

Russian Federation, Tomsk

Alexander G. Nigay

National Research Tomsk Polytechnic University

Email: agn4@tpu.ru

Candidate of Science in physics and mathematics

Russian Federation, Tomsk

Kristina K. Paushkina

National Research Tomsk Polytechnic University

Email: kkp1@tpu.ru

PhD student

Russian Federation, Tomsk

Andrey O. Pleshko

National Research Tomsk Polytechnic University

Email: p.andrey12@mail.ru

PhD student

Russian Federation, Tomsk

References

  1. Padwal, M. B., B. Natan, and D. P. Mishra. 2021. Gel propellants. Prog. Energ. Combust. 83:100885. doi: 10.1016/j.pecs.2020.100885.
  2. Ciezki, H. K., and K. W. Naumann. 2016. Some aspects on safety and environmental impact of the German green gel propulsion technology. Propell. Explos. Pyrot. 41(3):539– 547. doi: 10.1002/prep.201600039.
  3. Baek, G., and C. Kim. 2011. Rheological properties of Carbopol containing nanoparticles. J. Rheol. 55(2):313– 330. doi: 10.1122/1.3538092.
  4. Varma, M., and R. Pein. 2009. Optimisation of processing conditions for gel propellant production. Int. J. Energetic Materials Chemical Propulsion 8(6):501–513. doi: 10.1615/IntJEnergeticMaterialsChemProp.v8.i6.30.
  5. Fakhri, S., J. G. Lee, and R.A. Yetter. 2010. Effect of nozzle geometry on the atomization and spray characteristics of gelled-propellant simulants formed by two impinging jets. Atomization Spray. 20(12):1033–1046. doi: 10.1615/ atomizspr.v20.i12.20.
  6. Glushkov, D. O., A. G. Nigay, V. A. Yanovsky and O. S. Yashutina. 2019. Effects of the initial gel fuel temperature on the ignition mechanism and characteristics of oil-filled cryogel droplets in the high-temperature oxidizer medium. Energ. Fuel. 33(11):11812–11820. doi: 10.1021/acs.energyfuels.9b02300.
  7. Glushkov, D. O., G. V. Kuznetsov, A. G. Nigay, V. A. Yanovsky, and O. S. Yashutina. 2020. Ignition mechanism and characteristics of gel fuels based on oil-free and oil-filled cryogels with fine coal particles. Powder Technol. 360:65–79. doi: 10.1016/j.powtec.2019.09.081.
  8. Vershinina, K. Y., G. S. Nyashina, V. V. Dorokhov, and N. E. Shlegel. 2019. The prospects of burning coal and oil processing waste in slurry, gel, and solid state. Appl. Therm. Eng. 156:51–62. doi: 10.1016/j.applthermaleng. 2019.04.035.
  9. Dreizin, E. L. 2009. Metal-based reactive nanomaterials. Prog. Energ. Combust. 35(2):141–167. doi: 10.1016/ j.pecs.2008.09.001.
  10. Maggi, F., S. Dossi, C. Paravan, et al. 2015. Activated aluminum powders for space propulsion. Powder Technol. 270(Part A):46–52. doi: 10.1016/j.powtec.2014.09.048.
  11. Sundaram, D., V. Yang, and R. A. Yetter. 2017. Metalbased nanoenergetic materials: Synthesis, properties, and applications. Prog. Energ. Combust. 61:293–365. doi: 10.1016/j.pecs. 2017.02.002.
  12. Pinchuk, V. A., and A. V. Kuzmin. 2020. The effect of the addition of TiO2 nanoparticles to coal–water fuel on its thermophysical properties and combustion parameters. Fuel 267:117220. doi: 10.1016/j.fuel.2020.117220.
  13. Glushkov, D. O., K. K. Paushkina, A. O. Pleshko, V. S. Vysokomorny. 2022. Characteristics of microexplosive dispersion of gel fuel particles ignited in 10.1016/j.fuel.2021.123024.
  14. Vershinina, K. Y., D. O. Glushkov, A. G. Nigay, V. A. Yanovsky and O. S. Yashutina. 2019. Oil-filled cryogels: New approach for storage and utilization of liquid combustible wastes. Ind. Eng. Chem. Res. 58(16):6830– 6840. doi: 10.1021/acs.iecr.9b00580.
  15. Glushkov, D. O., A. O. Pleshko, and O. S. Yashutina. 2020. Influence of heating intensity and size of gel fuel droplets on ignition characteristics. Int. J. Heat Mass Tran. 156:119895. doi: 10.1016/j.ijheatmasstransfer. 2020.119895.
  16. Glushkov, D. O., D. V. Feoktistov, G. V. Kuznetsov, K. A. Batishcheva, T. Kudelova and K. K. Paushki- na. 2020. Conditions and characteristics of droplets breakup for industrial waste-derived fuel suspensions ignited in high-temperature air. Fuel 265:116915. doi: 10.1016/j.fuel.2019.116915.
  17. Pinchuk, V. A., and T. A. Sharabura. 2015. Physical and chemical transformations under the thermal action on coal–water fuel made of low-grade coal. Metall. Min. Ind. 7(6):623–628.
  18. Pinchuk, V. 2018. The main regularities of ignition and combustion of coal-water fuels produced from fat, non-baking coal and anthracite. Int. J. Engineering Research Africa 38:67–78. doi: 10.4028/ href='www.scientific' target='_blank'>www.scientific. net/JERA.38.67.
  19. GOST 20799-88. 2005. Masla industrial’nye. Tekhnicheskie usloviya [Industrial oils. Specifications]. Moscow: Standardinforn. 7 p.
  20. Gazpromneft motor oils. 2022. Pasport bezopasnosti khimicheskoy produktsii. Industrial’noe maslo bez dobavok I-40A [The material safety data sheet of chemical products. Industrial oil without additives I-40A]. 46 p. Available at: https://gazpromneft-oil.ru/en#/ product/1609/tab/certi¦cate (accessed June 28, 2022).
  21. Glushkov, D. O., G. V. Kuznetsov, A. G. Nigay, and V. A. Yanovsky. 2020. Influence of gellant and dragreducing agent on the ignition characteristics of typical liquid hydrocarbon fuels. Acta Astronaut. 177:66–79. doi: 10.1016/j.actaastro.2020.07.018.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).