Simulation of homogeneous hydrogen–air detonation interaction with porous filter
- Авторлар: Tropin D.A.1, Vyshegorodcev K.A.1
-
Мекемелер:
- S. A. Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences
- Шығарылым: Том 15, № 3 (2022)
- Беттер: 28-34
- Бөлім: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/286542
- DOI: https://doi.org/10.30826/CE22150303
- EDN: https://elibrary.ru/HOYSHU
- ID: 286542
Дәйексөз келтіру
Аннотация
Calculations of the interaction of a cellular detonation wave (DW) with an inert porous filter were carried out based on the developed physical and mathematical model of the mechanics of heterogeneous medium which takes into account the detailed chemical kinetics of chemical reactions in the gas phase. Under an inert porous filter, a motionless lattice of inert particles is considered. The following flow regimes were revealed: propagation of attenuated cellular DW at velocities less than the Chapman–Jouguet velocity and detonation failure with the destruction of the cellular structure. Critical volume concentrations of filter particles corresponding to the detonation failure regime were calculated. Dependences of the normalized DW velocity and detonation cell size on the volume concentration of particles in filters were calculated. The concentration limits of detonation (critical volume concentrations of particles lead to detonation failure) in filters with diameters of 50, 100, and 200 m were determined. The dependences of the normalized DW velocity and size of detonation cell on the volume concentration and diameter of particles in filters were calculated.
Авторлар туралы
Dmitry Tropin
S. A. Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: d.a.tropin@itam.nsc.ru
Candidate of Science in physics and mathematics, senior research scientist
Ресей, NovosibirskKirill Vyshegorodcev
S. A. Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences
Email: vyshegorodcev.k.a@gmail.com
laboratory technician
Ресей, NovosibirskӘдебиет тізімі
- Gottiparthi, K. C., and S. Menon. 2012. A study of interaction of clouds of inert particles with detonation in gases. Combust. Sci. Technol. 184(3):406–433.
- Tropin, D. A., and A. V. Fedorov. 2014. Mathematical modeling of detonation wave suppression by cloud of chemically inert solid particles. Combust. Sci. Technol. 186(10-11):1690–1698.
- Tropin, D. A., and I. A. Bedarev. 2021. Problems of detonation wave suppression in hydrogen–air mixtures by clouds of inert particles in one- and two-dimensional formulation. Combust. Sci. Technol. 193(2):197–210.
- Hui, N. Y., J. Chen, T. Kao, H. Chiu, H. Tsai, and J. Chen. 2016. Kaohsiung vapor explosion — a detailed analysis of the tragedy in the harbour city. Chem. Engineer. Trans. 48:721–726. doi: 10.3303/CET1648121.
- Borisov, A. A., B. E. Gel’fand, S. A. Gubin, and S. M. Kogarko. 1975. Effect of inert solid particles on detonation of a combustible gas mixture. Combust. Explo. Shock Waves 11(6):774–778.
- Wolin‚ski, M., and P. Wolan‚ski. 1987. Gaseous detonation processes in presence of inert particles. Archivum Combustionis 7:353–370.
- Wolan‚ski, P., J. C. Liu, C. W. Kaufman, J. A. Nicholls, and M. Sichel. 1988. The effects of inert particles on methane– air detonations. Archivum Combustionis 8(1):15–32.
- Teodorczyk, A., and F. Benoan. 1996. Interaction of detonation with inert gas zone. Shock Waves 6:211–223.
- Papalexandris, M. V. 2004. Numerical simulation of detonations in mixtures of gases and solid particles. J. Fluid Mech. 507:95–142.
- Fedorov, A. V., D. A. Tropin, and I. A. Bedarev. 2010. Mathematical modeling of detonation suppression in a hydrogen–oxygen mixture by inert particles. Combust. Explo. Shock Waves 46(3):332–343.
- Fedorov, A. V., and D. A. Tropin. 2011. Determination of the critical size of a particle cloud necessary for suppression of gas detonation. Combust. Explo. Shock Waves 47(4):464–472.
- Shafiee, H., and M. H. Djavareshkian. 2014. CFD simulation of particles effects on characteristics of detonation. Int. J. Computer Theory Engineering 6(6):466–471.
- Tropin, D. A., and A. V. Fedorov. 2019. Effect of inert micro- and nanoparticles on the parameters of detonation waves in silane/hydrogen–air mixtures. Combust. Explo. Shock Waves 55(2):230–236.
- Tropin, D. A., and I. A. Bedarev. 2021. Physical and mathematical modeling of interaction of detonation waves with inert gas plugs. J. Loss Prevent. Proc. 72:104595.
- Bedarev, I. A., K. V. Rylova, and A. V. Fedorov. 2015. Application of detailed and reduced kinetic schemes for the description of detonation of diluted hydrogen– air mixtures. Combust. Explo. Shock Waves 51(5):528– 539.
- Bedarev, I. A., V. M. Temerbekov, and A. V. Fedorov. 2019. Simulating the regimes of oblique detonation waves arising at detonation initiation by a small-diameter projectile. Thermophys. Aeromech. 26(1):59–68.
- Bedarev, I. A., A.V. Fedorov, and A. V. Shul’gin. 2018. Computation of traveling waves in a heterogeneous medium with two pressures and a gas equation of state depending on phase concentrations. Comp. Math. Math. Phys. 58(5):775–789. doi: 10.1134/S0965542518050044.
- Frolov, S. M., and B. E. Gelfand. 1991. Problem of detonation suppression by means of blankets and foams. Combust. Explo. Shock Waves 27(6):756–763.
- Belikov, V. V., G.V. Belikova, V. M. Goloviznin, V. N. Semenov, L. P. Starodubtseva, and A. L. Fokin. 1995. Suppression of detonation in hydrogen–air mixture. High Temp. 33(3):449–454.
- Pinaev, A. V., A. A. Vasilev, and P. A. Pinaev. 2015. Suppression of gas detonation by a dust cloud at reduced mixture pressures. Shock Waves 25(3):267–275.
Қосымша файлдар
