Investigation of cycle-to-cycle variability at operation of pulsed detonation hydroramjet

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study is aimed at clarifying and eliminating the reasons of cycle-to-cycle variability during the operation of an innovative pulsed detonation hydroramjet (PDH) which reduces its thrust performance. An experimental sample of the PDH in the form of a pulsed detonation tube connected to an optically transparent water guide has been designed and manufactured. Experimental studies were performed with the vertical immersion of the sample in water. It was found that the cycle-to-cycle variability is associated with the overexpansion of gaseous detonation products in the detonation tube due to the inertia of the water column in the water guide. Gas overexpansion causes a reverse flow of the gas–water mixture which fills the water guide and penetrates the detonation tube, thus exerting a strong effect on the cyclic operation of the PDH. To eliminate the cycle-to-cycle variability, a new PDH model was developed, manufactured, and tested. The model is equipped with a rotary mechanical valve and operates on a propane–oxygen mixture. Its test fires showed that the use of the valve makes it possible to eliminate the cycle-to-cycle variability and to increase more than twice the average specific impulse: up to 550 s instead of 250 s at an operating frequency of 14 Hz.

About the authors

Konstantin A. Avdeev

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: kaavdeev@mail.ru

кандидат технических наук, ведущий научный сотрудник

Russian Federation, 4, Kosygin St., Moscow, 119991

Victor S. Aksenov

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; MEPhI National Research Nuclear University

Email: v.aksenov@mail.ru

Candidate of Science in Physics and Mathematics, Senior Researcher; Associate Professor

Russian Federation, 4, Kosygin St., Moscow, 119991; 31, Kashirskoe Hwy, Moscow, 115409

Ilyas A. Sadykov

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: ilsadykov@mail.ru

Postgraduate Student, Junior Researcher

Russian Federation, 4, Kosygin St., Moscow, 119991

Sergey M. Frolov

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; MEPhI National Research Nuclear University

Email: smfrol@chph.ras.ru

Doctor of Science in Physics and Mathematics, Head of Department, Head of the Laboratory; Professor

Russian Federation, 4, Kosygin St., Moscow, 119991; Kashirskoe Hwy, Moscow, 115409

Fedor S. Frolov

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: f.frolov@chph.ru

Candidate of Science in Physics and Mathematics, Senior Researcher

Russian Federation, 4, Kosygin St., Moscow, 119991

Igor O. Shamshin

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: igor_shamshin@mail.ru

Candidate of Science in Physics and Mathematics, Senior Researcher

Russian Federation, 4, Kosygin St., Moscow, 119991

References

  1. Frolov, S. M., V. S. Aksenov, F. S. Frolov, and K. A. Avdeev. 2013. Vodometnyy impul’snyy detonatsionnyy dvigatel’ (varianty) i sposob sozdaniya gidroreaktivnoy tyagi [Pumpjet pulse detonation engine (variants) and method for creating hydro-jet]. Patent WO/2015/099552. Available at: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015099552&cid=P10-KLWBNQ-86226-1 (accessed February 14, 2021).
  2. Frolov, S. M., K. A. Avdeev, V. S. Aksenov, F. S. Frolov, I. A. Sadykov, I. O. Shamshin, and R. R. Tukhvatullina. 2016. Direct conversion of fuel chemical energy into the energy of water motion. Nonequilibrium processes in physics and chemistry. Eds. A. M. Starik and S. M. Frolov. Moscow: TORUS PRESS. 2:251–262.
  3. Frolov, S. M., V. S. Aksenov, I. A. Sadykov, K. A. Avdeev, and I. O. Shamshin. 2017. Ispytaniya eksperimental’nykh obraztsov vodometnogo dvizhitelya s impul’sno- detonatsionnym goreniem zhidkogo topliva [Testing of experimental models of a hydrojet with pulsed-detonation combustion of liquid fuel]. Goren. Vzryv (Mosk.) — Combustion and Explosion 10(2):73–82.
  4. Frolov, S. M., V. S. Aksenov, I. A. Sadykov, K. A. Avdeev, and I. O. Shamshin. 2017. Hydrojet engine with pulse detonation combustion of liquid fuel. Dokl. Phys. Chem. 475(1):129–133. doi: 10.1134/S0012501617070053.
  5. Frolov, S. M., K. A. Avdeev, V. S. Aksenov, F. S. Frolov, I. A. Sadykov, I. O. Shamshin, and R. R. Tukhvatullina. 2019. Pulsed detonation hydroramjet. Advances in pulsed and continuous detonations. Ed. S. M. Frolov. Moscow: TORUS PRESS. 372–396. doi: 10.30826/ICPCD201829.
  6. Frolov, S. M., V. S. Aksenov, K. A. Avdeev, I. A. Sadykov, I. O. Shamshin, and R. R. Tukhvatullina. 2019. Pulsed- detonation hydroramjet. Recent progress in detonation for propulsion. Eds. S. M. Frolov and J. Kasahara. Moscow: TORUS PRESS. 68–70. doi: 10.30826/IWDP201925.
  7. Frolov, S. M., K. A. Avdeev, V. S. Aksenov, A. A. Borisov, F. S. Frolov, I. O. Shamshin, R. R. Tukhvatullina, B. Basara, W. Edelbauer, and K. Pachler. 2017. Experimental and computational studies of shock wave-to-bubbly water momentum transfer. Int. J. Multiphas. Flow 92:20–38. doi: 10.1016/j.ijmultiphaseflow.2017.01.016.
  8. Frolov, S. M., K. A. Avdeev, V. S. Aksenov, F. S. Frolov, I. A. Sadykov, I. O. Shamshin, and R. R. Tukhvatullina. 2020. Pulsed detonation hydroramjet: Simulations and experiments. Shock Waves 30(3):221–234. doi: 10.1007/ s00193-019-00906-2.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).