Mechanisms of compression wave generation and amplification in freely propagating flames

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper is devoted to the numerical and theoretical analysis of the mechanisms of generation and amplification of shock waves in the process of unconfined flame propagation. Two basic mechanisms of shock wave generation corresponding to the linear and nonlinear stages of hydrodynamic instability development are distinguished. The role of thermoacoustic instability in shock wave amplification and the establishment of the conditions for deflagration-to-detonation transition is demonstrated on the example of a highly chemically active mixture.

About the authors

Alexey D. Kiverin

Joint Institute for High Temperatures of the Russian Academy of Sciences

Author for correspondence.
Email: alexeykiverin@gmail.com

Candidate of Science in Physics and Mathematics, Head of the Laboratory

Russian Federation, 13-2, Izhorskaya St., Moscow, 125412

Ivan S. Yakovenko

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: yakovenko.ivan@bk.ru

кандидат физико-математических наук, старший научный сотрудник

Russian Federation, 13-2, Izhorskaya St., Moscow, 125412

References

  1. Ng, H. D., and J. Lee. 2008. Comments on explosion problems for hydrogen safety. J. Loss Prevent. Proc. 21(2):136–146. doi: 10.1016/j.jlp.2007.06.001.
  2. Mitigation of hydrogen hazards in severe accidents in nuclear power plants. 2011. Vienna: IAEA. IAEA- TECDOC-1661. Available at: https://www-pub.iaea. org/MTCD/Publications/PDF/TE^н1661^нWeb.pdf (accessed December 27, 2020)
  3. Verhelst, S., and T. Wallner. Hydrogen-fueled internal combustion engines. 2009. Prog. Energ. Combust. 35(6):490–527. doi: 10.1016/j.pecs.2009.08.001.
  4. Efremov, V. P., M. F. Ivanov, A. D. Kiverin, and A. V. Utkin. 2016. Shock-wave dynamics during oil-filled transformer explosions. Shock Waves 27(3):517–522. doi: 10.1007/s00193-016-0688-2.
  5. Landau, L. D., and E. M. Lifshitz. 1987. Fluid mechanics: Vol. 6 (Course of theoretical physics). 2nd ed. Oxford: Butterworth-Heinemann, 1987. 552 p.
  6. Gostintsev, Yu. A., A. G. Istratov, and Yu. V. Shulenin. 1988. Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combust. Explo. Shock Waves 24(5):563–569.
  7. Zel’dovich, Ya. B., and A. I. Rozlovsky. 1947. Ob usloviyakh vozniknoveniya neustoychivosti normal’nogo goreniya [On the conditions for the formation of instability of normal combustion]. Dokl. Akad. Nauk SSSR 57(4):365–368.
  8. Kiverin, A. D., I. S. Yakovenko, and V. E. Fortov. 2019. Mechanism of detonation formation upon free flame propagation in an unconfined space. Dokl. Phys. 64:449– 452. doi: 10.1134/S102833581912005X.
  9. Kiverin, A. D., and I. S. Yakovenko. 2020. Perekhod k detonatsii v svobodno rasprostranyayushchikhsya plamenakh [Transition to detonation in freely propagating flames]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13(1):47–54.
  10. Bykov, V., A. Kiverin, A. Koksharov, and I. Yakovenko. 2019. Analysis of transient combustion with the use of contemporary CFD techniques. Comput. Fluids 194:104310. doi: 10.1016/j.compfluid.2019.104310.
  11. Keromnes, A., W. K. Metcalfe, K. A. Heufer, N. Donohoe, A. K. Das, C.-J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, M. C. Krejci, E. L. Petersen, W. J. Pitz, and H. J. Curran. 2013. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 160(6): 995–1011. doi: 10.1016/j.combustflame.2013.01.001.
  12. Kulikovskii, A. G., and N. T. Pashchenko. 2013. Stability of a flame front in a divergent flow. P. Steklov Inst. Math. 281:49–61. doi: 10.1134/S0081543813040068.
  13. Altantzis, C., C. Frouzakis, A. Tomboulides, M. Matalon, and K. Boulouchos. 2012. Hydrodynamic and thermodif- fusive instability effects on the evolution of laminar planar lean premixed hydrogen flames. J. Fluid Mech. 700:329– 361. doi: 10.1017/jfm.2012.136.
  14. Ivanov, M. F., and A. D. Kiverin. 2015. Generation of high pressures during the shock wave – flame interaction. High Temp. 53(5): 668–676. doi: 10.1134/S0018151X15030086.
  15. Efremov, V. P., M. F. Ivanov, A. D. Kiverin, and I. S. Yakovenko. 2015. Mechanisms of direct detonation initiation via thermal explosion of radiatively heated gas– particles layer. Results Phys. 5:290–296. doi: 10.1016/j. rinp.2015.10.003.
  16. Roy, G. D., S. M. Frolov, A. A. Borisov, and D. W. Netzer. 2004. Pulse detonation propulsion: Challenges, current status, and future perspective. Prog. Energ. Combust. 30(6):545–672. doi: 10.1016/j.pecs.2004.05.001.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).