Detonation in stratified two-phase systems “gaseous oxidizer – liquid fuel film”: three-dimensional simulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the results of multidimensional numerical calculations of direct detonation initiation and deflagration-to-detonation transition (DDT) in horizontal flat channels of different height filled with gaseous oxygen under normal conditions and with films of -heptane and -decane applied to the lower wall. The determining role of liquid fuel volatility in the mechanism of film detonation propagation is shown. The mechanism of detonation propagation in the system with an -heptane film is self-ignition of fuel vapors in the gas phase and in the system with an -decane film, it is the mechanical destruction of the film, evaporation of the resulting microdroplets, and self-ignition of fuel vapors in the gas phase. It is shown that during DDT in channels of different height with an -heptane film, preflame secondary explosions leading to DDT occur in a shock-compressed mixture of oxygen with preevaporated fuel near the leading shock wave (SW) but at a large distance from the film — in areas with elevated temperature and increased gas residence time. The SW velocity at the time of DDT is 800–900 m/s and the resulting detonation wave (DW) propagates at a speed exceeding 1300 m/s. At low ignition energies, there may be two limiting values of the channel height — minimum and maximum — at which DDT is still possible. The minimum channel height is determined by momentum and energy losses on the walls and the maximum is determined by the presence of an additional mechanism for evening the pressure in the flame.

Full Text

Restricted Access

About the authors

Vladislav S. Ivanov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Author for correspondence.
Email: ivanov.vls@gmail.com

(b. 1986) — Doctor of Science in physics and mathematics, leading research scientist, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; research scientist, Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”

Russian Federation, 4 Kosygin Str., Moscow 119991; 36-1 Nakhimovskii Prosp., Moscow 117218

Sergey M. Frolov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Email: smfrol@chph.ras.ru

(b. 1959) — Doctor of Science in physics and mathematics, head of department, head of laboratory, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; professor, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); leading research scientist, Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”

Russian Federation, 4 Kosygin Str., Moscow 119991; 36-1 Nakhimovskii Prosp., Moscow 117218

Ilya V. Semenov

Scientific Research Institute for System Analysis of the Russian Academy of Sciences

Email: ilyasemv@yandex.ru

(b. 1973) — Candidate of Science in physics and mathematics, head of department

Russian Federation, 36-1 Nakhimovskii Prosp., Moscow 117218

References

  1. Lewis, B., and G. Von Elbe. 1961. Combustion flames and explosion of gases. 2nd ed. London, U.K.: Academic Press Inc. 570 p. doi: 10.1016/C2013-0-12402-6.
  2. Loison, R. 1952. Propagation d’une deflagration dans un tube recouvert d’une pelliculle d’huile. Comptes Rendus 234(5):512–513.
  3. Gordeev, V. E., V. F. Komov, and Y. K. Troshin. 1965. O detonatsionnom gorenii geterogennykh sistem [Detonation burning of heterogeneous systems]. Dokl. Akad. Nauk SSSR 160(4):853–856.
  4. Komov, V. F., and Ya. K. Troshin. 1965. O strukture i mekhanizme detonatsii geterogennykh sistem [Structure and detonation mechanism of heterogeneous systems]. Dokl. Akad. Nauk SSSR 162(1):133–135.
  5. Komov, V. F., and Ya. K. Troshin. 1967. O svoystvakh detonatsii v nekotorykh geterogennykh sistemakh [On the properties of detonation in some heterogeneous systems]. Dokl. Akad. Nauk SSSR 175(1):109–112.
  6. Lesnyak, S. A., M. A. Nazarov, and Ya. K. Troshin. 1968. K mekhanizmu rasprostraneniya geterogennoy detonatsii [To the propagation mechanism of heterogeneous detonation]. Dokl. Akad. Nauk SSSR 182(5):1122–1125.
  7. Lesnyak, S. A., M. A. Nazarov, and Ya. K. Troshin. 1968. Vzaimodeystvie udarnoy volny s plenkoy vyazkoy zhidkosti [Interaction of shock wave with a film of viscous liquid]. Dokl. Akad. Nauk SSSR 183(3):628–631.
  8. Borisov, A. A., S. M. Kogarko, and A. V. Lyubimov. 1968. Ignition of fuel films behind shock waves in air and oxygen. Combust. Flame 12(5):465–468. doi: 10.1016/0010-2180(68)90059-X.
  9. Ragland, K. W., and J. A. Nicholls. 1969. Two-phase detonation of a liquid layer. AIAA J. 7(5):859–863. doi: 10.2514/3.5236.
  10. Bowen, J. R., K. W. Ragland, F. J. Steffes, and T. G. Loflin. 1971. Heterogeneous detonation supported by fuel fogs or films. Symposium (International) on Combustion 13(1):1131–1139. doi: 10.1016/S0082-0784(71)80110-8.
  11. Sichel, M., C. S. Rao, and J. A. Nicholls. 1971. A simple theory for the propagation of film detonations. Symposium (International) on Combustion 13(1):1141–1149. doi: 10.1016/S0082-0784(71)80111-X.
  12. Ragland, K. W., and C. F. Garcia. 1972. Ignition delay measurements in two-phase detonations. Combust. Flame 18(1):53–58. doi: 10.1016/0010-2180(72)90032-6.
  13. Rao, C. S. R., M. Sichel, and J. A. Nicholls. 1972. A two-dimensional theory for two phase detonation of liquid films. Combust. Sci. Technol. 4(1):209–220. doi: 10.1080/00102207108952487.
  14. Fujitsuna, Y., and S. Tsug . 1973. On detonation waves supported by diffusion flames: I. The equivalent Chapman–Jouguet condition. Symposium (International) on Combustion 14(1):1265–275. doi: 10.1016/ S0082-0784(73)80113-4.
  15. Pinaev, A. V., and Mitrofanov V. V. 1975. Spinovaya detonatsiya v geterogennoy sisteme tipa gaz–plenka [Spin detonation in heterogeneous gas–film system]. Dokl. Acad. Nauk SSSR 225(3):613–616.
  16. Lesnyak, S. A., M. A. Nazarov, A. I. Serbinov, and Ya. K. Troshin. 1975. Ignition delay in a heterogeneous (gas–film) detonation front. Combust. Explo. Shock Waves 11(6):765–769. doi: 10.1007/BF00744776.
  17. Vorobiov, M. V., S. A. Lesnyak, M. A. Nazarov, and Ya. K. Troshin. 1976. Neustoychivost’ granitsy razdela gaz–zhidkost’ za frontom udarnoy volny, skol’zyashchey vdol’ poverkhnosti plenki zhidkosti [Instability of the gas–liquid interface behind a shoch wave front sliding over the liquid film surface]. Dokl. Akad. Nauk SSSR 227(4):900–903.
  18. Vorobiov, M. V., S. A. Lesnyak, M. A. Nazarov, and Ya. K. Troshin. 1976. Razrushenie plenki vyazkoy zhidkosti potokom udarno szhatogo gaza [Fragmentation of viscous liquid film by the flow of shock-compressed gas]. Dokl. Akad. Nauk SSSR 230(2):344–346.
  19. Vorobiov, M. V., S. A. Lesnyak, M. A. Nazarov, and Y. K. Troshin. 1976. Vosplamenenie geterogennykh (gaz–plenka) sistem udarnymi volnami [Ignition of heterogeneous (gas–film) systems by shock waves]. Dokl. Akad. Nauk SSSR 231(1):119–122.
  20. Pinaev, A. V. 1977. Structure of detonation waves and reaction zone in a heterogeneous system gas–film. Combust. Explo. Shock Waves 13(3):408–415. doi: 10.1007/BF00740311.
  21. Borisov, A. A., B. E. Gelfand, S. M. Sherpanev, and E. I. Timofeev. 1981. Mechanism for mixture formation behind a shock sliding over a fluid surface. Combust. Explo. Shock Waves 17(5):558–563. doi: 10.1007/BF00798146.
  22. Pinaev, A. V., and V. A. Subbotin. 1982. Reaction zone structure in detonation of gas–film type systems. Combust. Explo. Shock Waves 18(5):585–591. doi: 10.1007/ BF00800630.
  23. Frolov, S. M., B. E. Gelfand, and E. I. Timofeev. 1984. Interaction of a liquid film with a high-velocity gas flow behind a shock wave. Combust. Explo. Shock Waves 20(5):573–579. doi: 10.1007/ BF00782255.
  24. Frolov, S. M., B. E. Gelfand, and A. A. Borisov. 1985. Simple model of detonation in a gas–film system with consideration of mechanical fuel removal. Combust. Explo. Shock Waves 21(1):104–110. doi: 10.1007/BF01471149.
  25. Gelfand, B. E., S. M. Frolov, A. N. Polenov, and S. A. Tsyganov. 1987. Vosplamenenie plenok goryuchego za udarnymi volnami [Ignition of fuel films behind shock waves]. Soviet J. Chemical Physics 6(5):702–706.
  26. Borisov, A. A., A. E. Mailkov, V. V. Kosenkov, and V. S. Aksenov. 1991. Propagation of gaseous detonations over liquid layers. Dynamics of detonations and explosions: Detonations. Eds. J.-C. Leyer, A. A. Borisov, A. L. Kuhl, and W. A. Sirignano. Progress in astronautics and aeronautics ser. Washington, DC: AIAA, 1991. Vol. 133. P. 268–278.
  27. Lyamin, G. A., and A. V. Pinaev. 1992. Heterogeneous detonation (gas–film) in a porous medium. Region of existence and limits. Combust. Explo. Shock Waves 28(5):544–550. doi: 10.1007/ BF00755732.
  28. Kobiera, A., and P. Wolanski. 2003. Ignition of liquid and dust fuel layers by gaseous detonation. Shock Waves 12:413–419. doi: 10.1007/s00193-002-0174-x.
  29. Rodriguez, V., G. Jourdan, A. Marty, A. Allou, and J.-D. Parisse. 2016. Planar shock wave sliding over a water layer. Exp. Fluids 57:125. doi: 10.1007/s00348-016-2217-6.
  30. Rodriguez, V., G. Jourdan, A. Marty, A. Allou, and J.-D. Parisse. 2019. Liquid-surface entrainment induced by shocked air stream. Shock Waves 29:361–364. doi: 10.1007/s00193-018-0807-3.
  31. Frolov, S. M., V. S. Aksenov, and I. O. Shamshin. 2017. Deflagration-to-detonation transition in the gas–liquid-fuel film system. Dokl. Phys. Chem. 474(2):93–98. doi: 10.1134/S0012501617060021.
  32. Frolov, S. M., V. S. Aksenov, and I. O. Shamshin. 2017. Perekhod goreniya v detonatsiyu v stratifitsirovannoy sisteme kislorod – plenka zhidkogo topliva [Deflagration-to-detonation transition in a stratified oxygen – liquid fuel film system]. Khim. Fiz. 36(6):34–44. doi: 10.7868/S0207401X17060073.
  33. Shamshin, I. O., V. S. Aksenov, and S. M. Frolov. 2017. Perekhod goreniya v detonatsiyu v geterogennoy sisteme “kislorod – plenka zhidkogo -dekana” [Deflagration-to-detonation transition in the heterogeneous system “oxygen – liquid -decane film”]. Goren. Vzryv (Mosk.) — Combustion and Explosion 10(4):36–44.
  34. Frolov, S. M., I. O. Shamshin, V. S. Aksenov, I. A. Sadykov, P. A. Gusev, V. A. Zelenskii, E. V. Evstratov, and M. I. Alymov. 2018. Rocket engine with continuous film detonation of liquid fuel. Dokl. Phys. Chem. 481(2):105–109. doi: 10.1134/S0012501618080018.
  35. Frolov, S. M., I. O. Shamshin, V. S. Aksenov, P. A. Gusev, V. A. Zelenskii, E. V. Evstratov, and M. I. Alymov. 2020. Rocket engine with continuously rotating liquid-film detonation. Combust. Sci. Technol. 192(1):144–165. doi: 10.1080/00102202.2018.1557643.
  36. Frolov, S. M., I. O. Shamshin, and V. S. Aksenov. 2021. Deflagration-to-detonation transition in stratified oxygen–liquid fuel film systems. Combust. Sci. Technol. doi: 10.1080/00102202.2021.1929196.
  37. Ivanov, V. S., and S. M. Frolov. 2024. Three-dimensional mathematical simulation of two-phase detonation in the system of a gaseous oxidizer with fuel droplets. Russ. J. Phys. Chem. B 18(5):1341–1349. doi: 10.1134/ S1990793124701112.
  38. Ivanov, V. S., S. M. Frolov, and A. E Zangiev. 2024. Struktura detonatsionnoy volny v dvukhfaznoy sisteme gazoobraznyy okislitel’ – kapli zhidkogo goryuchego [Detonation wave structure in a two-phase system containing gaseous oxidizer and liquid fuel droplets]. Goren. Vzryv (Mosk.) — Combustion and Explosion 17(3):49–61. doi: 10.30826/CE24170305.
  39. Ivanov, V. S., and S. M. Frolov. 2024. Trekhmernoe matematicheskoe modelirovanie detonatsii v kapel’noy gazovzvesi normal’nogo geksadekana v vozdukhe [Three-dimensional mathematical modeling of detonation in the air suspension of -hexadecane droplets]. Goren. Vzryv (Mosk.) — Combustion and Explosion 17(3):62–73. doi: 10.30826/CE24170306.
  40. Gamezo, V. N., C. L. Bachman, and E. S. Oran. 2020. Flame acceleration and DDT in large-scale obstructed channels filled with methane–air mixtures. P. Combust. Inst. 38(3):3521–3528. doi: 10.1016/ j.proci.2020.09.018.
  41. Jia, X., N. Zhao, S. Liu, X. Chen, W. Zhu, and H. Zheng. 2021. Numerical investigation of detonation initiation for low-volatility liquid fuel/air mixtures. Aerosp. Sci. Technol. 113:106690. doi: 10.1016/j.ast.2021.106690.
  42. Frolov, S. M. 2012. Acceleration of the deflagration-to-detonation transition in gases: From Shchelkin to our days. Combust. Explo. Shock Waves 48(3):258–268. doi: 10.1134/S0010508212030021. EDN: RFZKHF.
  43. Frolov, S. M., V. S. Ivanov, B. Basara, and M. Suffa. 2013. Numerical simulation of flame propagation and localized preflame autoignition in enclosures. J. Loss Prevent. Proc. 26:302–309.
  44. Basevich, B. Ya., A. A. Belyaev, S. N. Medvedev, V. S. Posvyanskii, and S. M. Frolov. 2015. Kineticheskie detal’nyy i global’nyy mekhanizmy dlya surrogatnogo topliva [Detailed and global kinetic mechanisms for surrogate fuel]. Goren. Vzryv (Mosk.) — Combustion and Explosion 8(1):21–28.
  45. Ivanov, V. S., I. O. Shamshin, and S. M. Frolov. 2023. Computational study of deflagration-to-detonation transition in a semi-confined slit combustor. Energies 16:7028.
  46. Frolov, S. M. 2009. Detonations of liquid sprays and drop suspensions: Theory. Von Karman Institute for Fluid Mechanics lecture ser. “Liquid fragmentation in high-speed flow.”
  47. Nigmatulin, R. I. 1987. Dinamika mnogofaznykh sred [Dynamics of multiphase]. Moscow: Nauka. Part II. 360 p.
  48. Nigmatulin, R. I., B. I. Nigmatulin, Ya. D. Khodzhaev, and V. E. Kroshilin. 1996. Entrainment and deposition rates in a dispersed-film flow. Int. J. Multiphas. Flow 22(1):19–30.
  49. Bhattacharya, S., A. Lutfurakhmanov, J. Hoey, O. Swenson, Z. Mahmud, and I. Akhatov. 2013. Aerosol flow through a converging-diverging micro-nozzle. Nonlinear Engineering 2. doi: 10.1515/nleng-2013-0020.
  50. Saffman, P. G. 1965. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22:385–400.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Lifting of microdroplets behind an air shock wave sliding over a film of liquid n-hexadecane: (a)M=1,7; and (b)M=2.0. The color of the droplets corresponds to their size

Download (176KB)
3. Fig. 2. Comparison of calculated (solid curves) and measured [21] (signs) dependences of the lift height of liquid microdroplets on time after passing an air shock wave with a Mach number M=1.7 (1) and 2.0 (2)

Download (108KB)
4. Fig. 3. Schematics of channels in experiments [32, 33]. The shaded wall corresponds to the film surface. Dimensions are in millimeters

Download (446KB)
5. Calculated dependences of the film detonation velocity on the distance traveled in a channel with a height of H=54 mm: (a) n-heptane film; and (b) n-decane film. The dotted line corresponds to the film detonation velocity measured in [33, 36]

Download (224KB)
6. Fig. 5. Calculated distributions of temperature, pressure, and mass fraction of fuel vapors in the DW sliding in a channel of height H=54 mm over films of n-heptane (a) and n-decane (b). The dots show microdroplets above the film surface. The arrows show the beginnings of energy release zones

Download (561KB)
7. Fig. 6. Calculated dependences of the leading shock wave velocity on the traveled distance during DDT in channels 24 (dotted curves) and 54 mm (solid curves) high with n-heptane films at an ignition energy of 5 (gray curves) and 10 J (black curves). The arrows show the conditional values of the DDT run-up distance LDDT

Download (120KB)
8. Fig. 7. An example of calculated three-dimensional distributions of pressure and flame front surface in a channel of height H=54 mm with a film of n-heptane at the initial stage of flame propagation: t=1 ms after ignition

Download (367KB)
9. Fig. 8. Calculated distributions of temperature, mass fraction of fuel vapors, and normalized rate of preflame reactions during DDT in a channel of height H=54 mm with n-heptane film: (a) initial stage of flame propagation; (b) immediately prior to DDT; and (c) immediately after DDT. The dots show microdroplets above the film surface. Ignition energy is 5 J

Download (660KB)
10. Fig. 9. Calculated temperature distribution in a channel of height H=54 mm with a film of n-heptane at an ignition energy of 0.1 J. The dots show microdroplets above the film surface

Download (123KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».