Simulation of combustionof high-speed transverse hydrogen jetsin a rectangular duct using the iddes approach

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of the third stage of numerical simulation of the ONERA LAPCAT II experiment on high-speed hydrogen combustion in a model duct are described. At this stage, the calculations are carried out taking into account the duct wall roughness and the presence of glass on the side walls. A synthetic turbulence generator is also added at the duct entrance and the initial field is obtained in a preliminary RANS (Reynolds-averaged Navier–Stokes) simulation using the nonlinear shear stress transport (SST-NL) model causing the emergence of secondary flows in channel corners. The simulation results obtained using the SST-based improved delayed detached eddy simulation (SST-IDDES) approach are presented. It is shown that the account for glasses affects the structure of separation regions but has little effect on average flow parameters and pressure distribution along the duct. The nonlinear model and the synthetic turbulence generation have a significant impact on all flow parameters.

Texto integral

Acesso é fechado

Sobre autores

Sergei Bakhne

Central Aerohydrodynamic Institute named after Prof. N. E. Zhukovky (TsAGI)

Autor responsável pela correspondência
Email: bakhne@phystech.edu

(b. 1994) — junior research scientist, Central Aerohydrodynamic Institute named after Prof. N. E. Zhukovky (TsAGI); assistant, Moscow Institute of Physics and Technology (MIPhT)

Rússia, 1 Zhukovsky Str., Zhukovsky 140180, Moscow Region

Vladimir Vlasenko

Central Aerohydrodynamic Institute named after Prof. N. E. Zhukovky (TsAGI)

Email: vlasenko.vv@yandex.ru

(b. 1969) — Doctor of Science in physics and mathematics, deputy head of laboratory, Central Aerohydrodynamic Institute named after Prof. N. E. Zhukovky (TsAGI); professor, Moscow Institute of Physics and Technology (MIPhT)

Rússia, 1 Zhukovsky Str., Zhukovsky 140180, Moscow Region

Bibliografia

  1. Oefelein, J. C. 2006. Large eddy simulation of turbulent combustion processes in propulsion and power systems. Prog. Aerosp. Sci. 42(1):2–37. doi: 10.1016/j.paerosci. 2006.02.001.
  2. Spalart, P. R. 2009. Detached-eddy simulation. Annu. Rev. Fluid Mech. 41:181–202. doi: 10.1146/annurev.fluid. 010908.165130.
  3. Menter, F., A. H ppe, A. Matyushenko, and D. Kolmogorov . 2021. An overview of hybrid RANS-LES models ddeveloped for industrial CFD. Appl. Sci. — Basel 11(6):2459. doi: 10.3390/app11062459.
  4. Vlasenko, V. V., W. Lju, S. S. Molev, and V. A. Sabelnikov. 2020. Vliyanie usloviy teploobmena i khimicheskoy kinetiki na strukturu techeniya v model’noy kamere sgoraniya ONERA LAPCAT II [Influence of heat exchange conditions and chemical kinetics on the flow structure in the ONERA LAPCAT II model combustion chamber]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13:36–47. doi: 10.30826/CE20130205.
  5. Sabelnikov, V. A., A. I. Troshin, S. Bakhne, S. S. Molev, and V. V. Vlasenko . 2021. Poisk opredelyayushchikh fizicheskikh faktorov v validatsionnykh raschetakh eksperimental’noy modeli ONERA LAPCAT II s uchetom sherokhovatosti stenok kanala [Search for determining physical factors in validation calculations of the ONERA LAPCAT II experimental model taking into account the duct wall roughness]. Goren. Vzryv (Mosk.) — Combustion and Explosion 14(4):55–67. doi: 10.30826/CE21140406.
  6. Bakhne, S., A. Troshin, V. Sabelnikov, and V. Vlasenko. 2023. Improved delayed detached eddy simulation of combustion of hydrogen jets in a high-speed confined hot air cross flow. Energies 16:1736. doi: 10.3390/en16041736.
  7. Liu, W. 2023. Analysis of factors determining numerical solution in the calculation of flow with combustion using the ONERA experimental model. Thermophys. Aeromech. 30:507–523. doi: 10
  8. Bakhne, S., V. Vlasenko, A. Troshin, V. Sabelnikov, and A. Savelyev . 2023. Improved delayed detached eddy simulation of combustion of hydrogen jets in a high-speed confined hot air cross flow II: New results. Energies 16(21):7262. doi: 10.3390/en16217262.
  9. Vincent-Randonnier, A., Y. Moule, and M. Ferrier. 2014. Combustion of hydrogen in hot air flows within LAPCAT-II dual mode ramjet combustor at Onera-LAERTE facility — experimental and numerical investigation. AIAA Paper No. 2014-2932. doi: 10.2514/6.2014-2932.
  10. Balland, S., and A. Vincent-Randonnier. 2015. Numerical study of hydrogen/air combustion with CEDRE code on LAERTE dual mode ramjet combustion experiment. AIAA Paper No. 2015-3629. doi: 10.2514/6.2015-3629.
  11. Vincent-Randonnier, A., V. Sabelnikov, A. Ristori, N. Zettervall, and C. Fureby. 2019. An experimental and computational study of hydrogen–air combustion in the LAPCAT II supersonic combustor. P. Combust. Inst. 37(3):3703–3711. doi: 10.1016/j.proci.2018.05.127.
  12. Pelletier, G., M. Ferrier, A. Vincent-Randonnier, V. Sabelnikov, and A. Mura. 2021. Wall roughness effects on combustion development in confined supersonic flow. J. Propul. Power 37(1):151–166. doi: 10.2514/1.B37842.
  13. Volino, R. J., W. J. Devenport, and U. Piomelli. 2022. Questions on the effects of roughness and its analysis in non-equilibrium flows. J. Turbul. 23:454–466. doi: 10.1080/14685248.2022.2097688.
  14. Bruce, P. J. K., D. M. F. Burton, N. A. Titchener, and H. Babinsky. 1997. Corner effect and separation in transonic channel flows. J. Fluid Mech. 679:247–262. doi: 10.1017/jfm.2011.135.
  15. Bruce, P. J. K., H. Babinsky, B. Tartinville, and C. Hirsch. 2011. Corner effect and asymmetry in transonic channel flows. AIAA J. 49(11):2382–2392. doi: 10.2514/1.J050497.
  16. Sabnis, K. 2020. Supersonic corner flows in rectangular ducts. Cambridge: University of Cambridge. Ph.D. Thesis. doi: 10.17863/CAM.59806.
  17. Boychev, K. 2021. Shock wave – boundary-layer interactions in high-speed intakes. Glasgow: Univesity of Glasgow. Ph.D. Thesis. Available at: https://theses.gla.ac.uk/82577/ (accessed November 17, 2024).
  18. Spalart, P. R. 2000. Strategies for turbulence modeling and simulations. Int. J. Heat Fluid Fl. 21:252–263. doi: 10.1016/S0142-727X(00)00007-2.
  19. Mani, M., D. Babcock, C. Winkler, and P. R. Spalart. 2013. Predictions of a supersonic turbulent flow in a square duct. AIAA Paper No. 2013-0860. doi: 10.2514/6.2013-860.
  20. Troshin, A. I., S. S. Molev, V. V. Vlasenko, S. V. Mikhailov, S. Bakhne, and S. V. Matyash. 2023. Modelirovanie turbulentnykh techeniy na osnove podkhoda IDDES s pomoshch’yu programmy zFlare [Turbulent flow simulation based on the IDDES approach using the code zFlare]. Vych. Mekh. Splosh. sred [Compututational Continuum Mechanics] 16(2):203–218. doi: 10.7242/1999-6691/2023.16.2.18.
  21. Bosnyakov, S., I. Kursakov, A. Lysenkov, S. Matyash, S. Mikhailov, V. Vlasenko, and J. Quest. 2008. Computational tools for supporting the testing of civil aircraft configurations in wind tunnels. Prog. Aerosp. Sci. 44:67–120. doi: 10.1016/j.paerosci.2007.10.003.
  22. Menter, F. R., M. Kuntz, and R. Langtry . 2003. Ten years of industrial experience with the SST turbulence model. Turbulence Heat Mass Transfer 4(1):625–632. Available at: https://cfd.spbstu.ru/agarbaruk/doc/2003_Menter, %20Kuntz,%20Langtry_Ten%20years%20of%20industrial%20experience%20with%20the%20SST%20turbulence%20model.pdf.
  23. Suga, K., T. J. Craft, and H. Iacovides. 2006. An analytical wall-function for turbulent flows and heat transfer over rough walls. Int. J. Heat Fluid Fl. 27:852–866. doi: 10.1016/j.ijheatfluidflow.2006.03.011.
  24. Aupoix, B. 2015. Roughness corrections for the – SST model: Status and proposals. J. Fluid. Eng. — T. ASME 137(2):021202. 10 p. doi: 10.1115/1.4028122.
  25. Zhang, R., M. Zhang, and C. W. Shu. 2011. On the order of accuracy and numerical performance of two classes of finite volume WENO schemes. Commun. Comput. Phys. 9(3):807–827. doi: 10.4208/cicp.291109.080410s.
  26. Suresh, A., and H. Huynh. 1997. Accurate monotonicity-preserving schemes with Runge–Kutta time stepping. J. Comput. Phys. 136(1):83–99. doi: 10.1006/ jcph.1997.5745.
  27. Gritskevich, M. S., A. V. Garbaruk, J. Sch tze, and F. R. Menter. 2011. Development of DDES and IDDES formulations for the – shear stress transport model. Flow Turbul. Combust. 88(3):431–449. doi: 10.1007/ s10494-011-9378-4.
  28. Guseva, E. K., A. V. Garbaruk, and M. K. Strelets. 2017. An automatic hybrid numerical scheme for global RANS–LES approaches. J. Phys. Conf. Ser. 929(1). doi: 10.1088/1742-6596/929/1/012099.
  29. Bakhne, S., and V. Sabelnikov . 2022. A method for choosing the spatial and temporal approximations for the LES approach. Fluids 7(12):376. doi: 10.3390/fluids7120376.
  30. Bakhne, S., and A. I. Troshin. 2023. Comparison of upwind and symmetric WENO schemes in large eddy simulation of basic turbulent flows. Comp. Math. Math. Phys. 63(6):1122–1136. doi: 10.31857/S0044466923060030.
  31. Jachimowski, C. J. 1992. An analysis of combustion studies in shock expansion tunnels and reflected shock tunnels. Hampton: NASA. Technical Paper 3224.
  32. Matyushenko, A. A., and A. V. Garbaruk. 2017. Non-linear correction for the – SST turbulence model. J. Phys. Conf. Ser. 929. doi: 10.1088/1742-6596/929/ 1/012102.
  33. Pelletier, G., M. Ferrier, A. Vincent-Randonnier, and A. Mura. 2020. Delayed detached eddy simulations of rough-wall turbulent reactive flows in a supersonic combustor. AIAA Paper No. 2020-2409. doi: 10.2514/6.2020-2409.
  34. Mikheev, M. A. 1966. Rasschetnye formuly konvektivnogo teploobmena [Calculation formulas for convective heat transfer]. Izv. AN SSSR [Izvestia of the USSR Academy of Sciences. Power Engineering and Transportation] 5:96–105.
  35. Shur, M. L., P. R. Spalart, M. K. Strelets, and A. K. Travin. 2014. Synthetic turbulence generators for RANS–LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbul. Combust. 93:63–92. doi: 10.1007/s10494-014-9534-8.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Figure 1: Model duct of the experimental setup ONERA LAERTE

Baixar (315KB)
3. Figure 2: Streamlines and isosurface of the zero longitudinal velocity component, RANS simulations: (a) without taking into account glass windows; and (b) taking into account glass windows

Baixar (350KB)
4. Figure 3: Structure of separation zones (flow is directed from left to right): (a) RANS simulation using the SST model; and (b) RANS simulation using the SST-NL model

Baixar (243KB)
5. Figure 4: Pressure distribution along the duct: ONERA experiments (1) and RANS simulations using the SST (roughness height (equivalent sand grain size) m) (2) and SST-NL models: 3 — m; 4 — 80; and 5 — m

Baixar (135KB)
6. Figure 5: The field of Mach number in the plane of symmetry in the vicinity of hydrogen jet: (a) IDDES simulation without STG from [104]; and (b) IDDES simulation with STG

Baixar (137KB)
7. Figure 6: The field of Mach number in the symmetry plane at successive time instants of the IDDES simulation: (a) ms (initial field); (b) ms; (c) 0.96; (d) 2.05; (e) 2.88; (f) 4; and (g) ms

Baixar (464KB)
8. Figure 7: Pressure distribution along the duct: 1 — ONERA experiments; 2 — RANS simulation using the SST-NL model (initial field, m); and 3 and 4 — IDDES simulations ( m) at two consecutive points in time (3 — 2.88 ms and 4 – 4.88 ms)

Baixar (140KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).