Investigation of three-dimensional effects on flame stabilization in a subsonic flow with premixed combustion
- Authors: Balabanov R.A.1,2
-
Affiliations:
- Moscow Institute of Physics and Technology (MIPT)
- Central Aerohydrodynamic Institute named after Prof. N. E. Zhukovky (TsAGI)
- Issue: Vol 17, No 4 (2024)
- Pages: 15-28
- Section: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/284248
- DOI: https://doi.org/10.30826/CE24170402
- EDN: https://elibrary.ru/NSMKDK
- ID: 284248
Cite item
Abstract
The results of three-dimensional calculations of P. Magre et al. experiment (ONERA) with premixed methane–air combustion in a model channel with backward step are presented. The calculations are carried out with EPaSR (Extended Partially Stirred Reactor) model to take into account the first channel of turbulence–chemistry interaction. The problems caused by transition to non-Boussinesq models of DRSM class are discussed in the article. The article offers a solution to the problem caused by the absence of turbulent kinetic energy production in the flame front which arises in calculations with DRSM models. The significant influence of non-Boussinesq models on the flow structure is demonstrated. The influence of the transversal inhomogeneity of the velocity field on the flame flashback formation region is highlighted. The application of the two-way turbulence–chemistry interaction model EPaSR-PrOm shows that the side walls heat exchange severely influences the field of turbulent Prandtl number decreasing its value compared to that of the two-dimensional calculation.
Keywords
Full Text

About the authors
Roman A. Balabanov
Moscow Institute of Physics and Technology (MIPT); Central Aerohydrodynamic Institute named after Prof. N. E. Zhukovky (TsAGI)
Author for correspondence.
Email: balabanov.ra@phystech.edu
(b. 1999) — postgraduate student, Moscow Institute of Physics and Technology (MIPT); engineer, Central Aerohydrodynamic Institute named after Prof. N. E. Zhukovky (TsAGI)
Russian Federation, 9 Institutsky Lane, Dologoprudny 141701, Moscow Region; 1 Zhukovsky Str., Zhukovsky 140180, Moscow RegionReferences
- Magre, P., P. Moreau, G. Collin, R. Borghi, and M. P alat . 1987. Further studies by CARS of premixed turbulent combustion in a high velocity flow. Combust. Flame 71(2):147–168. doi: 10.1016/0010-2180(88)90004-1.
- Balabanov, R. A., V. V. Vlasenko, and A. Yu. Nozdrachev . 2024. Opisanie predvaritel’no peremeshannogo turbulentnogo goreniya v kanale so stupen’koy pri pomoshchi modeley klassa PaSR [Description of premixed turbulent combustion in a channel with a step using partially stirred reactor models]. Combust. Explo. Shock Waves 60(4):44–55. doi: 10.15372/FGV2024.9453.
- Lewis, B., and G. von Elbe. 1987. Combustion, flames and explosions of gases. 3rd ed. Orlando, FL: Academic Press. 740 p.
- Matyushenko, A. A., and A. V. Garbaruk. 2017. Non-linear correction for the – SST turbulence model. J. Phys. Conf. Ser. 929:012102. doi: 10.1088/1742-6596/929/1/012102.
- Cecora, R.-D., R. Radespiel, B. Eisfeld, and A. Probst . 2015. Differential Reynolds stress modeling for aeronautics. AIAA J. 53(3):739–755. doi: 10.2514/1.J053250.
- Pettersson Reif, B., and H. Andersson. 2002. Prediction of turbulence-generated secondary mean flow in a square duct. Flow Turbul. Combust. 68:41–61. doi: 10.1023/ A:1015611721026.
- Oh, M. T. 1995. Assessment of Reynolds stress turbulence closures for separated flow over backward-facing step. Transactions Korean Society Mechanical Engineers 19(11):3014–3021. doi: 10.22634/KSME.1995. 19.11.3014.
- Gibson, M. M., and B. E. Launder. 1978. Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86(3):491–511. doi: 10.1017/ S0022112078001251.
- Petrova, N. 2015. Turbulence chemistry interaction models for numerical simulation of aeronautical propulsion systems. Palaiseau: Ecole polytechnique. PhD Diss. 316 p.
- Shiryaeva, A. A. 2018. Modelirovanie vysokoskorostnykh techeniy so smeshannymi rezhimami turbulentnogo goreniya na osnove trekhmernykh uravneniy Reynol’dsa [Modeling of high speed flows with premixed regimes of turbulent combustion on the basis of three-dimensional Reynolds equations]. Zhukovsky. PhD Diss. 217 p.
- Fureby, C. 2007. Comparison of flamelet and finite rate chemistry LES for premixed turbulent combustion. AIAA Paper No. 1413-2007.
- Balabanov, R. A., V. V. Vlasenko, and A. A. Shiryaeva. 2022. Opyt validatsii modeley turbulentnogo goreniya klassa PaSR i plany razvitiya etikh modeley primenitel’no k kameram sgoraniya gazoturbinnykh ustanovok [Experience in validation of turbulent combustion models of the PaSR class and plansfor the development of these models in relation to the combustion chambers of gas turbine units]. Goren. Vzryv (Mosk.) — Combustion and Explosion 15(4):48–57.
- Ferrarotti, M., Z. Li, and A. Parente. 2019. On the role of mixing models in the simulation of MILD combustion using finite-rate chemistry combustion models. P. Combust. Inst. 37(4):4531–4538. doi: 10.1016/j.proci.2018.07.043.
- Menter, F. R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8):1598–1605.
- Menter, F. R., M. Kuntz, and R. Langtry. 2003. Ten years of industrial experience with the SST turbulence model. Turbulence Heat Mass Transfer 4(1):625–632.
- Sabelnikov, V., and C. Fureby. 2013. LES combustion modeling for high Re flames using a multi-phase analogy. Combust. Flame 160(1):83–96. doi: 10.1016/j.combustflame.2012.09.008.
- Basevich, V., A. Belyaev, and S. Frolov. 1998. “Global” kinetic mechanisms for calculating turbulent reactive flows. I. The basic chemical heat release process. Chem. Phys. Rep. 17(9):1747–1772.
- Libby, P. A., and K. N. C. Bray. 1981. Countergradient diffusion in premixed turbulent flames. AIAA J. 19(2):205–213.
- Zhang, S., and C. J. Rutland. 1995. Premixed flame effects on turbulence and pressure-related terms. Combust. Flame 102(4):447–461. doi: 10.1016/0010-2180(95)00036-6.
- Sabelnikov, V. A., A. N. Lipatnikov., S. Nishiki, et al. 2021. Dissipation and dilatation rates in premixed turbulent flames. Phys. Fluids 33(3). doi: 10.1063/5.0039101.
- Lindstedt, R. P., and E. M. Vaos. 1999. Modeling of premixed turbulent flames with second moment methods. Combust. Flame 116(4):461–485. doi: 10.1016/S0010-2180(98)00058-3.
- Lebedev, A. B., K. Y. Yakubovskii, and P. D. Toktaliev . 2018. Numerical modeling of steady and unsteady combustion regimes of methane–air mixture in research combustion chamber with step. J. Phys. Conf. Ser. 1261(1):012020. doi: 10.1088/1742-6596/1261/1/012020.
Supplementary files
