Composition of pasty propellants and specific features of their burning

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Paste propellant propulsion is a possible alternative to the commonly used liquid and solid propellant propulsion. However, information on the burning process of pasty condensed systems remains very limited. The paper presents the results of experimental study of the burning process of pasty condensed systems at varying their composition. The study deals with determining the parameters of the burning rate law and the characteristics of the agglomeration process. The description of the research methodology is provided. Paste compositions have been identified that provide control of the burning process of pasty propellants which includes changing the law of burning rate and agglomeration characteristics. A significant role of the intermediate structure — skeleton layer — in the burning process of the system under consideration has been established. The obtained data made it possible to reveal a general physical mechanism of the burning process of pasty propellants.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Valery Babuk

Voenmeh Baltic State Technical University named after D. F. Ustinov

Хат алмасуға жауапты Автор.
Email: babuk_va@mail.ru

Doctor of Sciences in Technology, Professor, Head of the Department

Ресей, Saint Petersburg

Dimitry Kuklin

Voenmeh Baltic State Technical University named after D. F. Ustinov

Email: dimitrykuklin1997@mail.ru

PhD Student

Ресей, Saint Petersburg

Sergey Naryzhny

Voenmeh Baltic State Technical University named after D. F. Ustinov

Email: sergei.nar@bk.su

Junior Researcher

Ресей, Saint Petersburg

Alexander Nizyaev

Voenmeh Baltic State Technical University named after D. F. Ustinov

Email: anizyaev@bstu.spb.su

Candidate of Sciences in Technology, Associate Professor

Ресей, Saint Petersburg

Әдебиет тізімі

  1. Zhivotov, N. P., V. A. Sorokin, V. P. Frantskevich, V. A. Kozlov, E. V. Surikov, V. D. Fel’dman, V. M. Abashev, V. V. Chervakov, M. S. Sharov, and L. S. Yanovskiy. 2010. Raketno-pryamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh [Rocket-ramjet engines on solid and pasty propellants]. Moscow: Fizmatlit. 350 p.
  2. Belyaev, N. M., N.P. Belik, and E. I. Uvarov. 1979. Reaktivnye sistemy upravleniya kosmicheskimi letatel’nymi apparatami [Jet control systems for spacecraft]. Moscow: Mashinostroenie. 231 p.
  3. DeLuca, L. T., T. Shimada, V. P. Sinditskii, M. Calabro, and A. P. Manzara. 2017. An introduction to energetic materials for propulsion. Chemical rocket propulsion. A comprehensive survey of energetic materials. Eds. L. T. De Luca, T. Shimada, V. P. Sinditskii, and M. Calabro. Springer. 3–59.
  4. Babuk, V. A., D. I. Kuklin, K. N. Kuklina, and S. Yu. Naryzhnyy. 2023. Problema shlakoobrazovaniya v dvigatelyakh na pastoobraznom toplive [The problem of slag formation in paste propellant engines]. Goren. Vzryv (Mosk.) — Combustion and Explosion 16(2):90–97.
  5. Meleshko, V. Yu., G. Ya. Pavlovets, A. I. Gladyshev, and A. S. Bulavskiy. 2022. Sostoyanie i napravleniya razrabotki pastoobraznykh toplivnykh kompozitsiy dlya pryamotochnykh vozdushno-reaktivnykh dvigateley raketnykh i artilleriyskikh sistem [Status and directions of development of pasty propellant compositions for ramjet engines of rocket and artillery systems]. Izvestiya RARAN [Proceedings of the Russian Academy of Rocket and Artillery Sciences] 121(1):121–127.
  6. Babuk, V. A., D. I. Kuklin, S. Yu. Naryzhnyy, and A. A. Nizyaev. 2023. Zakonomernosti goreniya pastoobraznykh kondensirovannykh system [Patterns of burning of pasty condensed systems]. Goren. Vzryv (Mosk.) — Combustion and Explosion 16(1):71–76.
  7. Babuk, V. A., D. I. Kuklin, S. Yu. Naryzhnyy, and A. A. Nizyaev. 2023. Paste-like propellants and features of their burning. Combust. Explo. Shock Waves 58(2):236– 243.
  8. Babuk, V. A., N. L. Budnyy, D. I. Kuklin, S. Yu. Naryzhnyy, and A. A. Nizyaev. 2022. Intermediate structures in the process of burning of high-energy condensed systems. Combust. Explo. Shock Waves 58(4):408–414.
  9. Lengelle, G., J. Duterque, and J. F. Trubert. 2000. Physico-chemical mechanisms of solid propellant combustion. Solid propellant chemistry, combustion, and motor interior ballistics. Eds. V. Yang, T. B. Brill, and W. Z. Ren. Progress in astronautics and aeronautics ser. AIAA. 185:287–334.
  10. Denisyuk, A. P., Yu. G. Shevelev, D. L. Rusin, and I.V. Shumskiy. 2001. Effect of RDX and HMX on the efficiency of catalysts for double-base propellant combustion. Combust. Explo. Shock Waves 37(2):190–196. doi: 10.1023/A:1017561827203.
  11. Denisyuk, A. P., L. A. Demidova, V. A. Sizov, and A. P. Merkushkin. 2017. Vliyanie uglerodnykh nanotrubok na zakonomernosti goreniya nizkokaloriynykh porokhov [The effect of carbon nanotubes on the combustion patterns of low-calorie powders]. Goren. Vzryv (Mosk.) — Combustion and Explosion 10(1):59–63.
  12. Denisyuk, A. P., Yu. M. Milekhin, L. A. Demidova, and V.A. Sizov. 2018. Effect of carbon nanotubes on the catalysis of propellant combustion. Dokl. Chem. 483(2):301– 303. doi: 10.1134/S0012500818120078.
  13. Ignatieva, E. L., D. B. Lempert, N. V. Chukanov, G. V. Shilov, and S. M. Aldoshin. 2022. Cocrystallyzate of α-CL-20 with water and hydrogen peroxide as a potential component of solid composite propellants. Russ. J. Phys. Chem. B 16(2):300–307. doi: 10.1134/S1990793122020178.
  14. Babuk, V. A., I. N. Dolotkazin, and A. A. Glebov. 2005. Burning mechanism of aluminized solid rocket propellants based on energetic binders. Propellants Explosives Pyrotechnics 30(4):281–290.
  15. Babuk, V. A., and A. A. Nizyaev. 2014. Modelirovanie struktury smesevykh tverdykh topliv i problema opisaniya protsessa aglomeratsii [Modeling the structure of mixed solid fuels and problems of describing the agglomeration process]. Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopics] 16(1):31–42.
  16. Beckstead, M. W., K. Puduppakkam, P. Thakre, and V. Yang. 2007. Modeling of combustion and ignition of solid-propellant ingredients. Prog. Energ. Combust. 33(6):497–551.
  17. Babuk, V., I. Dolotkazin, A. Gamsov, A. Glebov, L. T. DeLuca, and L. Galfetti. 2009. Nanoaluminum as a solid propellant fuel. J. Propul. Power 25(2):482–489.
  18. Beckstead, M. W., R. L. Derr, and C. F. Price. 1970. A model of composite solid-propellant combustion based on multiple flames. AIAA J. 8(12):2200–2207.
  19. Babuk, V. A. 2017. Formulation factors and properties of condensed combustion products. Chemical rocket propulsion. A comprehensive survey of energetic materials. Eds. L. T. De Luca, T. Shimada, V. P. Sinditskii, and M. Calabro. Springer. 319–341.
  20. Babuk, V. A., N. L. Budnyy, A. N. Ivonenko, and A. A. Nizyaev. 2018. Simulation of characteristics of condensed products in a combustion chamber. Combust. Explo. Shock Waves 54(3):301–308.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Propellant burning rate vs. pressure

Жүктеу (69KB)
3. Fig. 2. Dependences of parameters (a), η(P) (b), and D43(P) (c) on pressure

Жүктеу (145KB)
4. Fig. 3. Mass functions of the size distribution density of agglomerates for composition Bas_1: 1 — high density; and 2 — low density

Жүктеу (64KB)
5. Fig. 4. Schematic of the burning zone

Жүктеу (129KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).