The unified combustion mechanism of energetic materials
- Authors: Denisyuk A.P.1, Demidova L.A.1, Gulakov M.Y.1, Merkushkin A.O.1
-
Affiliations:
- D. I. Mendeleev University of Chemical Technology of Russia
- Issue: Vol 17, No 3 (2024)
- Pages: 84-91
- Section: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/277568
- DOI: https://doi.org/10.30826/CE24170308
- EDN: https://elibrary.ru/EKCWZW
- ID: 277568
Cite item
Abstract
The effect of 11-diethylferrocene (DEF) individually and in combination with carbon black (CB) and carbon nanotubes (CNT) on the combustion of a model sample based on an inactive binder 12.2% polyvinyl butyral, plasticized with 15.8% dibutyl phthalate and 70% ammonium perchlorate containing 1.4% teflone-4 and 0.6% technological additives was studied. Propellants samples were manufactured using rolling and through-pressing. Burning rate was determined in a constant pressure device in a nitrogen atmosphere on armored checkers with a diameter of 6 mm and a height of 15 mm. The structure and elemental composition of the combustion surface of the quenched samples are investigated. It was shown that when samples with a catalyst and CNT are burned, a frame is formed on the combustion surface on which a significant accumulation of the catalyst particles, CNT, and teflone occurs. Thus, combustion catalysis occurs by the same mechanism as for double-based propellants and various explosives containing nitrogroups, i. e., the mechanism of catalysis of energetic materials is uniform.
Keywords
Full Text

About the authors
Anatoly P. Denisyuk
D. I. Mendeleev University of Chemical Technology of Russia
Author for correspondence.
Email: denisuyk.a.p@muctr.ru
Doctor of Sciences in Technology, RARAS Academician, Professor of the Department of Chemistry and Technology of High-Molecular Compounds
Russian Federation, MoscowLarisa A. Demidova
D. I. Mendeleev University of Chemical Technology of Russia
Email: demidova.l.a@muctr.ru
Candidate of Sciences in Technology, Main Specialist of the Department of Chemistry and Technology of High-Molecular Compounds
Russian Federation, MoscowMikhail Yu. Gulakov
D. I. Mendeleev University of Chemical Technology of Russia
Email: gulakov.m.i@muctr.ru
Leading Engineer of the Department of Chemistry and Technology of High-Molecular Compounds
Russian Federation, MoscowAlexey O. Merkushkin
D. I. Mendeleev University of Chemical Technology of Russia
Email: merkushkin@muctr.ru
Candidate of Sciences in Chemistry, Senior Researcher, Associate Professor of the Department of High Energy and Radiology
Russian Federation, MoscowReferences
- Denisyuk, A. P., L. A. Demidova, and V. I. Galkin. 1995. The primary zone in the combustion of solid propellants containing catalysts. Combust. Explo. Shock Waves 31(2):161–167.
- Denisyuk, A. P., A. D. Margolin, N. P. Tokarev, et al. 1977. Role of carbon black in combustion of ballistic powders with lead-containing catalysts. Combust. Explo. Shock Waves 13(4):490–496.
- Denisyuk, A. P., L. A. Demidova, V. A. Sizov, and A. O. Merkushkin. 2017. Vliyanie uglerodnykh nanotrubok na zakonomernosti goreniya nizkokaloriynykh porokhov [Influence of carbon nanotubes on the combustion laws of low-calorie propellant]. Goren. Vzryv (Mosk.) — Combustion and Explosion 10(1):59–63.
- Denisyuk, A. P., V. G. Khubaev, and Y. G. Shepelev. 1977. Effect of catalysts on the combustion of diethanoldinitrate nitroamine. Combust. Explo. Shock Waves 13(1): 118–120.
- Denisyuk, A. P., Z. N. Aung, and Y. G. Shepelev. 2021. Energetic materials combustion catalysis: Necessary conditions for implementation. Propell. Explos. Pyrot. 46(1):90– 98.
- Denisyuk, A. P., Z. N. Aung, V. A. Sizov, L. A. Demidova, and A. O. Merkushkin. 2023. Burning rate catalysts action on the trinitroresorcinol combustion wave parameters. Int. J. Chem. Kinet. 55(8):467–478.
- Htwe, Y. Z., and A. P. Denysiuk. 2013. Combustion of double-base propellants of various compositions containing ammonium nitrate. Combust. Explo. Shock Waves 49:288–298. doi: 10.1134/S0010508213030052.
- Sinditskii, V. P., A. N. Chernyi, and D. A. Marchenkov. 2014. Mechanism of combustion catalysis by ferrocene derivatives. 2. Сombustion of ammonium perchloratebased propellants with ferrocene derivatives. Combust. Explo. Shock Waves 50(2):158–167.
- Rusin, D. L. 2008. Osnovy kompleksnogo modifitsirovaniya polimernykh kompozitov, pererabatyvaemykh prokhodnym pressovaniem [Fundamentals of complex modification of polymer composites processed by continuous pressing]. Moscow: RCTU. 222 p.
- Denisyuk, A. Р., Y. M. Milekhin, L. A. Demidova, and V. A. Sizov. 2018. Influence of carbon nanotubes on the propellant combustion catalysis regularities. Dokl. Akad. nauk 483(6):632–634. doi: 10.31857/ S086956520003437-3.
- Aung, Z. N. 2023. Zakonomernosti vliyaniya katalizatorov na gorenie energonasyshchennykh materialov razlichnogo stroeniya, soderzhashchikh nitrogruppy [Regularities of catalysts’s effect on the combustion of energy-saturated materials of different structures containing nitro groups]. Moscow: RCTU. PhD Thesis. 20 p.
- Denisyuk, A. Р., Y. Z. Htwe, and S. V. Chernykh. 2007. Issledovanie zakonomernostey goreniya porokhov s nitratom ammoniya [Study of combustion patterns of powders with ammonium nitrate]. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology] 21(7):119–123.
- Denisyuk, A. Р., M. Yu. Gulakov, V. A. Sizov, et al. 2019. Vliyanie katalizatorov na skorost’ goreniya topliv na aktivnom svyazuyushchem s nitratom ammoniya [The influence of catalysts on the burning rate of an active binder propellant with ammonium nitrate]. Goren. Vzryv (Mosk.) — Combustion and Explosion 13(4):116–121. doi: 10.30826/CE20130412. EDN: QFPOZA.
Supplementary files
