Three-dimensional mathematical modeling of detonation in the air suspension of n-hexadecane droplets
- Authors: Ivanov V.S.1,2, Frolov S.M.1,3,2
-
Affiliations:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Scientific Research Institute for System Analysis of the Russian Academy of Sciences
- MEPhI National Research Nuclear University
- Issue: Vol 17, No 3 (2024)
- Pages: 62-73
- Section: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/277543
- DOI: https://doi.org/10.30826/CE24170306
- EDN: https://elibrary.ru/ZPVKIA
- ID: 277543
Cite item
Abstract
Numerical simulation is used to study the differences and specific features of the propagation of heterogeneous detonation waves in a vertical channel filled by air suspensions of droplets of n-hexadecane and iso-octane — flammable liquids with very different vapor pressure under normal conditions. The difference in vapor pressure exerts a strong effect on the conditions for the existence of heterogeneous detonation in the suspensions. Thus, heterogeneous detonation in air suspensions of iso-octane droplets can be initiated in a channel without taking special measures. However, for the initiation of heterogeneous detonation in air suspensions of n-hexadecane droplets, there is a need in significant liquid prevaporization. For example, for the air suspension of stoichiometric composition, a degree of liquid prevaporization must exceed a certain critical value (about 40%). When the degree of liquid prevaporization is lower than this critical value, the chemical energy release behind the lead shock wave does not ensure the self-sustaining character of reaction wave propagation. When passing through the critical value of the degree of liquid prevaporization, there is a drastic change in the energy release mode in the propagating reaction wave: the energy release starts from the volumetric (kinetically controlled) self-ignition of the vapor–air mixture behind the lead shock wave accompanied with a significant increase in temperature, which accelerates subsequent processes of mixture formation and (diffusion controlled) energy release. At a subcritical value of the degree of liquid prevaporization, this starting period is weakly manifested.
Full Text

About the authors
Vladislav S. Ivanov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Scientific Research Institute for System Analysis of the Russian Academy of Sciences
Author for correspondence.
Email: ivanov.vls@gmail.com
Doctor of Sciences in Physics and Mathematics, Leading Researcher; Researcher
Russian Federation, Moscow; MoscowSergey M. Frolov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; MEPhI National Research Nuclear University; Scientific Research Institute for System Analysis of the Russian Academy of Sciences
Email: smfrol@chph.ras.ru
Doctor of Sciences in Physics and Mathematics, Head of the Department, Head of the Laboratory; Professor; Leading Researcher
Russian Federation, Moscow; Moscow; MoscowReferences
- Baker, W. E., P. A. Cox, P. S. Westine, J. J. Kulesz, and R. A. Strehlow. 1983. Explosion hazards and evaluation. Amsterdam–Oxford–New York: Elsevier. Vol. 1. 807 p.
- Marshall, V. C. 1987. Major chemical hazards. New York, NY: Ellis Horwood. 587 p.
- Zeldovich, Ia. B., and A. S. Kompaneets. 1960. Theory of detonation. New York, NY: Academic Press. 284 p.
- Nettleton, M. A. 1987. Gaseous detonations: Their nature, effects and control. London–New York: Chapman and Hall. 270 p.
- Zel’dovich, Ya. B. 1980. Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39(2):211–214.
- Frolov, S. M., V. Ya. Basevich, and V. S. Posvianskii. 2004. Limiting drop size and prevaporization degree required for spray detonation. Application of detonation to propulsion. Eds. G. D. Roy, S. M. Frolov, and J. E. Shepherd. Moscow: TORUS PRESS. 110–119.
- Basevich, V. Ya., S. M. Frolov, and V. S. Posvyanskii. 2005. Usloviya sushchestvovaniya statsionarnoy geterogennoy detonatsii [Existence conditions for the steady-state heterogeneous detonations]. Khim. Fiz. 24(7):58–68.
- Papavassiliou, J., A. Makris, R. Knystautas, J. H. S. Lee, C. K. Westbrook, and W. J. Pitz. 1993. Measurements of cellular structure in spray detonations. Dynamic aspects of explosion phenomena. Eds. A. L. Kuhl, J.-C. Leyer, A. A. Borisov, and W. A. Sirignano. Progress in astronautics and aeronautics ser. Washington, DC: AIAA. 154:148–69.
- Mitrofanov, V. V. 2003. Detonatsiya gomogennykh i geterogennykh sistem [Detonation of homogeneous and heterogeneous systems]. Novosibirsk: Lavrentiev Institute of Hydrodynamics Publ. 200 p.
- Borisov, A. A., B. E. Gel’fand, S. A. Gubin, S. M. Kogarko, and A. L. Podgrebenkov. 1970. The reaction zone of two-phase detonations. Astronaut. Acta 15(5-6):411–417.
- Eidelman, S., and A. Burkat. 1980. Evolution of a detonation wave in a cloud of fuel droplets. Part I: Influence of ignition explosion. AIAA J. 18(9):1103–1109.
- Zhdan, S. A. 1976. Calculation of a spherical heterogeneous detonation. Combust. Explo. Shock Waves 12(4):531–538.
- Zhdan, S. A. 1977. Calculation of heterogeneous detonation taking into account deformation and breakdown of fuel droplets. Combust. Explo. Shock Waves 13(2):217– 221.
- Gubin, S. A., and M. Sichel. 1977. Calculation of the detonation velocity of liquid droplets and gaseous oxidizer. Combust. Sci. Technol. 17(3-4):109–117.
- Borisov, A. A., B. E. Gelfand, and A.V. Gubanov. 1981. The effect of relaxation processes on the detonation in heterogeneous mixtures. Archivum Combustionis 1(3/4):243– 249.
- Voronin, D. V., and S.A. Zhdan. 1984. Calculation of heterogeneous detonation initiation for a hydrogen–oxygen mixture in an explosion tube. Combust. Explo. Shock Waves 20(4):461–465. doi: 10.1007/BF00782401. EDN: NGBTKZ.
- Sichel, M. 1991. Numerical modeling of heterogeneous detonations. Numerical approaches to combustion modeling. Eds. E. S. Oran and J. P. Boris. Progress in astronautics aeronautics ser. New York, NY: AIAA Inc. 135:447–458.
- Sreznevsky B. I. 1882. Ob isparenii zhidkostey [On the evaporation of liquids]. Zh. Russkogo fizikokhimitcheskogo obshchestva[J. Russian Physical-Chemical Society] 14(8):420–442.
- Nigmatulin, R. I. 1987. Dinamika mnogofaznykh sred [Dynamics of multiphase]. Moscow: Nauka. Part I. 464 p.
- Frolov, S. M., V. Ya. Basevich, V. S. Posvianskii, and V. A. Smetanyuk. 2004. Isparenie i gorenie kapli uglevodorodnogo topliva. IV. Isparenie kapli s uchetom kollektivnykh effektov [Vaporization and combustion of a hydrocarbon fuel drop. Part IV: Drop vaporization with regard for spray effects]. Khim. Fiz. 23(7):41–50.
- Frolov, S. M., and V. A. Smetanyuk. 2006. Teploi massoobmen kapli s gazovym potokom [Heat and mass transfer of liquid drop with gas flow]. Khim. Fiz. 25(4):42–54.
- Ranz, W. E., and W. R. Marshall, Jr. 1952. Evaporation from drops, part I. Chem. Eng. Prog. 48:141–146.
- Borisov, A. A., S. M. Frolov, V. A. Smetanyuk, S. A. Polikhov, and C. Segal. 2005. Vzaimodeystvie kapli goryuchego s gazovym potokom [Interaction of fuel drop with gas flow]. Khim. Fiz. 24(7):50–57.
- Ju, Y., and C. K. Law. 2002. Propagation and quenching of detonation waves in particle laden mixtures. Combust. Flame 129(4):356–364.
- Lu, T. F., and C. K. Law. 2004. Heterogeneous effects in the propagation and quenching of spray detonations. J. Propul. Power 20(5):820–827.
- Frolov S. M., and V. S. Posvyanskii. 2008. Struktura i predely geterogennoy detonatsii [Structure and limits of heterogeneous detonation]. Goren. Vzryv (Mosk.) — Combustion and Explosion 1:1–5.
- Frolov, S. M., and V. S. Posvyanskii. 2010. Detonability of liquid-fuel drop suspensions in air. Explosion dynamics and hazards. Eds. S. M. Frolov, F. Zhang, and P. Wolanski. Moscow: TORUS PRESS. 337–364.
- Frolov, S. M., and V. Ya. Basevich. 2006. Gorenie kapel’ [Combustion of droplets. Zakony goreniya [Laws of combustion]. Ed. Yu. V. Polezhaev. Moscow: UNPC “Energomash.” 130–159.
- Ivanov, V. S., S. M. Frolov, and A. E. Zangiev. 2024. Struktura detonatsionnoy volny v dvukhfaznoy sisteme gazoobraznyy okislitel’ – kapli zhidkogo goruchego [Structure of detonation wave in a two-phase system of gaseous oxidizer – liquid fuel droplets]. Goren. Vzryv (Mosk.) — Combustion and Explosion 17(3):49–61.
- Ivanov, V. S., and S. M. Frolov. 2024. Three-dimensional mathematical simulation of two-phase detonation in the system of a gaseous oxidizer with fuel droplets. Russ. J. Phys. Chem. B 18(5):1341–1349. doi: 10.1134/ S1990793124701112.
- Benmahammed, М. А., B. Veyssiere, B. A. Khasainov, and M. Mara. 2016. Effect of gaseous oxidizer composition on the detonability of isooctane–air sprays. Combust. Flame 165:198–207.
- Reitz, R. D. 1987. Modeling atomization processes in high-pressure vaporizing sprays. Atomization Spray Technology 3(4):309–337.
- Dukowicz, J. K. 1979. Quasi-steady droplet change in the presence of convection. Los Alamos, CA: University of California, 1979. 18p.
- Pope, S. B. 1985. PDF methods for turbulent reactive flows. Prog. Energ. Combust. 11(2):119–192.
- Frolov, S. M., and V. S. Ivanov. 2010. Combined flame tracking particle method for numerical simulation of deflagration-to-detonation transition. Deflagrative and detonative combustion. Eds. G. Roy and S. Frolov. Moscow: TORUS PRESS. 133–156.
- Frolov, S. M., V. S. Ivanov, B. Basara, and M. Suffa. 2013. Numerical simulation of flame propagation and localized preflame autoignition in enclosures. J. Loss Prevent. Proc. 26:302–309.
- Basevich, V. Ya., A. A. Belyaev, S. N. Medvedev, V. S. Posvyansky, and S. M. Frolov. 2015. Kineticheskie detal’nyy i global’nyy mekhanizmy dlya surrogatnogo topliva [Kinetic detailed and global mechanisms for surrogate fuel]. Goren. Vzryv (Mosk.) — Combustion and Explosion 8(1):21–28.
Supplementary files
