Deflagration-to-detonation transition in a semiconfined slit combustor with separate supply of ethylene and oxygen at single-point and two-point ignition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper experimentally determines the conditions for mild detonation initiation in a vertical semiconfined flat layer of stoichiometric ethylene–oxygen mixture of finite thickness. Pointwise ignition of the layer is performed by a single spark gap or two spatially separated spark gaps. Mild detonation initiation means deflagration-to-detonation transition (DDT). The flame and detonation propagation process is recorded by high-speed black-and-white and color video cameras. Mixture ignition by a single spark gap shows that the probability of DDT monotonically increases from 0 to 1 with the height of the combustible mixture layer. There is always the critical height of the layer, at which this probability has an intermediate value between 0 and 1. In the experiments, the critical height of the layer was 80–100 mm. Simultaneous ignition of the mixture by two spark gaps can lead to both deceleration and acceleration of DDT. Comparison of black-and-white and color images of the DDT process shows that the shapes of the flame front and detonation wave are similar in both cases but the color image allows obtaining additional information on the flame temperature. However, the black-and-white image with a large dynamic range better displays the structure of the flame front and detonation wave. The obtained results can be used in developing the procedures for safe and reliable starting of continuous-detonation engines, which require careful control of the time of filling the engine combustor with fuel and oxidizer as well as the ignition time of the explosive mixture.

Full Text

Restricted Access

About the authors

Tatiana I. Eyvazova

MEPhI National Research Nuclear University; N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: Tanya.eyvazova@mail.ru

Student; Engineer

Russian Federation, Moscow; Moscow

Igor O. Shamshin

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: igor_shamshin@mail.ru

Candidate of Sciences in Physics and Mathematics, Leading Researcher

Russian Federation, Moscow

Vladislav S. Ivanov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: ivanov.vls@gmail.com

Doctor of Sciences in Physics and Mathematics, Leading Researcher

Russian Federation, Moscow

Victor S. Aksenov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; MEPhI National Research Nuclear University

Email: v.aksenov@mail.ru

Candidate of Sciences in Physics and Mathematics, Senior Researcher; Associate Professor

Russian Federation, Moscow; Moscow

Sergey M. Frolov

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; MEPhI National Research Nuclear University

Email: smfrol@chph.ras.ru

Doctor of Sciences in Physics and Mathematics, Head of the Department, Head of the Laboratory; Professor

Russian Federation, Moscow; Moscow

References

  1. Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. 2006. Continuous spin detonations. J. Propul. Power 22:1204– 1216.
  2. Rankin, B. A., M. L. Fotia, A. G. Naples, C. A. Stevens, J. L. Hoke, T. A. Kaemming, S. W. Theuerkauf, and F. R. Schauer. 2016. Overview of performance, application, and analysis of rotating detonation engine technologies. J. Propul. Power 33(1):1–13. doi: 10.2514/1.B36303.
  3. Zhou, R., D. Wu, and J.-P. Wang. 2016. Progress of continuously rotating detonation engines. Chinese J. Aeronaut. 29(1):15–29. doi; 10.1016/j.cja.2015.12.006.
  4. Anand, V., and E. Gutmark. 2019. Rotating detonation combustors and their similarities to rocket instabilities. Prog. Energ. Combust. 73:182–234.
  5. Wang, G., W. Liu, S. Liu, et al. 2021. Experimental verification of cylindrical air-breathing continuous rotating detonation engine fueled by non-premixed ethylene. Acta Astronaut. 189:722–732.
  6. Heister, S. D., J. Smallwood, A. Harroun, K. Dille, A. Martinez, and N. Ballintyn. 2022. Rotating detonation combustion for advanced liquid propellant space engines. Aerospace 9:581. doi: 10.3390/aerospace9100581.
  7. Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, and S. M. Frolov. 2022. Experimental study of the initial stage of the operation process in detonation rocket and air-breathing engines. Advances in detonation research. Ed. S. M. Frolov. Moscow: TORUS PRESS. 17–20. doi: 10.30826/ICPCD13A07.
  8. Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, and S. M. Frolov. 2022. Nachal’naya stadiya rabochego protsessa v nepreryvno-detonatsionnom dvigatele [Initial stage of the operation process in a rotating detonation engine]. Goren. Vzryv (Mosk.) — Combustion and Explosion 15(4):67–78. doi: 10.30826/CE22150407.
  9. Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, K. A. Avdeev, and S. M. Frolov. 2023. Rasprostranenie plameni i perekhod goreniya v detonatsiyu v poluogranichennoy ploskoy shchelevoy kamere sgoraniya s razdel’noy podachey etilena i kisloroda [Flame propagation and deflagration-to-detonation transition in a semiconfined flat slit combustor with separate supply of ethylene and oxygen]. Goren. Vzryv (Mosk.) — Combustion and Explosion 16(4):38–65. doi: 10.30826/CE23160405.
  10. Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, and S. M. Frolov. 2023. Deflagration-to-detonation transition in a semi-confined slit combustor filled with nitrogen diluted ethylene–oxygen mixture. Energies 16:1098. doi: doi.org/10.3390/en16031098.
  11. Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, K. A. Avdeev, and S. M. Frolov. 2023. Mild detonation initiation in rotating detonation engines: An experimental study of the deflagration-to-detonation transition in a semiconfined flat slit combustor with separate supplies of fuel and oxidizer. Aerospace 10:988. doi: 10.3390/aerospace10120988.
  12. Ivanov, V. S., I. O. Shamshin, and S. M. Frolov. 2023. Computational study of deflagration-to-detonation transition in a semi-confined slit combustor. Energies 16:7028. doi: 10.3390/en16207028.
  13. Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, S. M. Frolov, D. A. Vnuchkov, V. I. Zvegintsev, S. V. Lukashevich, and D. G. Nalivaichenko. 2023. Perekhod goreniya v detonatsiyu v poluogranichennom shchelevom zazore: experiment i raschet [Deflagration-to-detonation transition in semiconfined slit combustor: Experiment and calculation]. Protsessy goreniya i detonatsii v perspektivnykh energotekhnologiyakh [Combustion and detonation processes in advanced power technologies]. Eds. D. M. Markovich and O. V. Sharypov. Novosibirsk: NSU. 364–386.
  14. Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, and S. M. Frolov. 2024. Deflagration-to-detonation transition in a semiconfined slit combustor with separate supply of fuel and oxidizer. Transient deflagrations and detonation. Moscow: TORUS PRESS. 51–58. doi: 10.30826/ICPCD14A09.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of the distributed spark gap (only 5 of 26 discharge gaps are shown). Dimensions are in millimeters

Download (175KB)
3. Fig. 2. Coordinates of detonation onset (XDDT, YDDT) during ignition of a layer of C2H4 + 3O2 mixture by a single spark gap located at a height of hspark = 15 (a), 45 (b), and 75 mm (c): 1 — hest = 86 mm; 2 — 97; 3 — 118; 4 — hest = 140 mm; and 5 — Pi, pressure sensors coordinates

Download (110KB)
4. Fig. 3. Video frames of DDT and detonation propagation in a C2H4 + 3O2 mixture at hest = 118 ± 2 mm and ignition by a single spark gap with hspark = 15 mm: (a) experiment #1179 (color camera, XDDT = 250 mm, YDDT = 27 mm, and TDDT = 0.94 ms); and (b) experiment #1187 (black-and-white camera, XDDT = 260 mm, YDDT = 28 mm, and TDDT = 0.94 ms)

Download (131KB)
5. Fig. 4. Video frames of DDT and detonation propagation in a C2H4 + 3O2 mixture at hest = 98 ± 2 mm and ignition by a single spark gap with hspark = 45 mm: (a) experiment #1185 (color camera, XDDT = 422 mm, YDDT = 0 mm, and TDDT = 1.65 ms); and (b) experiment #1260 (black-and-white camera, XDDT = 394 mm, YDDT = 0 mm, and TDDT = 1.7 ms)

Download (113KB)
6. Fig. 5. Video frames of DDT and detonation propagation in a C2H4 + 3O2 mixture at hest = 98 ± 2 mm and ignition by two spark gaps: (a) experiment #1297 (black-and-white camera, hspark,1 = 15 mm and hspark,2 = 75 mm, XDDT = 608 mm, YDDT = 0 mm, and TDDT = 1.46 ms); and (b) experiment #1291 (black-and-white camera, hspark,1 = 45 mm and hspark,2 = 75 mm, XDDT = 305 mm, YDDT = 18 mm, and TDDT = 1.43 ms)

Download (115KB)
7. Fig. 6. Video frames of DDT and detonation propagation in a mixture of C2H4 + 3O2 at hest = 140 ± 2 mm and ignition by a single spark gap with hspark = 90 mm; experiment #1009 (black-and-white camera, XDDT = 0 mm, YDDT = 10 mm, and TDDT = 0.39 ms)

Download (72KB)
8. Fig. 7. Video frames of DDT and detonation propagation in a mixture of C2H4 + 3O2 at hest = 140 ± 2 mm and ignition by a single spark gap at hspark = 165 mm; experiment #1024 (black-and-white camera, XDDT = 0 mm, YDDT = 60 mm, and TDDT = 0.62 ms)

Download (91KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).