Controlled reflection of compression waves generated by pulsating combustion as a way to increase thrust of ejector pulsejet engine with a double bend gas duct

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of compression waves during cyclic pulsating combustion is the process that fundamentally distinguishes it from the stationary combustion. The paper considers the interaction of compression waves with the walls of the gas duct of a pulsejet engine having a double bend when deflagration combustion is realized. The computational model is based on the replacement of pulsating combustion by pulsating heat input. The experimental results showing the importance of taking into account the motion of compression waves are also given. The results obtained allow one to develop new design solutions for gas ducts of pulsejet engines realizing the potential of compression waves for the sake of achieving higher specific characteristics.

Full Text

Restricted Access

About the authors

Konstantin V. Migalin

Rotor Scientific Production Company

Author for correspondence.
Email: MigalinK7@gmail.com

Candidate of Sciences in Technology, Director

Russian Federation, Togliatti

Kirill A. Sidenko

Togliatti State University

Email: mail.ru63@mail.ru

Student

Russian Federation, Togliatti

Kirill K. Migalin

Rotor Scientific Production Company

Email: Rotor.skb82@mail.ru

Engineer

Russian Federation, Togliatti

Igor P. Boychuk

Admiral Ushakov Maritime State University

Email: ip.boychuk@gmail.com

Candidate of Sciences in Technology, Head of Department

Russian Federation, Novorossiysk

Dmitry A. Charntsev

Rotor Scientific Production Company

Email: visualmathstart@mail.ru

Candidate of Sciences in Technology, Researcher

Russian Federation, Togliatti

References

  1. Migalin, K. V., K. A. Sidenko, and K. K. Migalin. 2024. Ezhektornye dvukhkonturnye pul’siruyushchie vozdushno-reaktivnye dvigateli dlya okolo i sverkhzvukovykh skorostey poleta. Chislennye raschety rabochego protsessa [Ejector pulsejet engines for near and supersonic flight speeds. Numerical calculations of the working process]. Togliatti: Spektr. 268 p.
  2. Frolov, S. M., V. S. Aksenov, V. S. Ivanov, I. O. Shamshin, and S. A. Nabatnikov. 2019. Broskovye ispytaniya bespilotnogo letatel’nogo apparata s pryamotochnym vozdushno-reaktivnym impul’sno-detonatsionnym dvigatelem [Catapult launching tests of an unmanned aerial vehicle with a ramjet pulsed-detonation engine]. Goren. Vzryv (Mosk.) — Combustion and Explosion 12(1):63–72.
  3. Remeev, N. H., V. V. Vlasenko, and R. A. Hakimov. 2006. Chislennoe modelirovanie i eksperimental’noe issledovanie rabochego protsessa v modeli impul’snogo detonatsionnogo dvigatelya pryamotochnoy skhemy [Numerical modeling and experimental study of the working process in the model of a pulse detonation engine of a straight-current scheme]. Impul’snye detonatsionnye dvigateli [Pulse detonation engines]. Ed. S. M. Frolov. Moscow: TORUS PRESS. 311–348.
  4. Gitan. A. A., R. Zulkifli, K. Sopian, and Sh. Abdullah. 2014. Twin pulsating jets impingement heat transfer for fuel preheating in automotives. Appl. Mech. Mater. 663:322–328. doi: 10.4028/ href='www.scientific.net/AMM.663.322' target='_blank'>www.scientific.net/AMM.663.322.
  5. Falcao, C. E. G., B. S. Soriano, Ch. Rech, and H. A. Vielmo. 2015. Numerical study of an internal combustion engine intake process using a low Mach number preconditioned density-based method with experimental comparison. P. I. Mech. Eng. D — J. Aut. 229(14):1863–1877. doi: 10.1177/0954407015572234.
  6. Migalin, K. V., K. A. Sidenko, K. K. Migalin, and A. G. Egorov. 2019. Stvolovye i ezhektornye pul’siruyushchie vozdushno-reaktivnye dvigateli. Rabota v detonatsionnom rezhime [Barrel and ejector pulsejet engines. Operation in detonation mode]. 2nd ed. Togliatti: Togliatti State University Publs. 436 p.
  7. Gieras, M., and A. Trzeciak. 2023. A new approach to the phenomenon of pulsed combustion. Exp. Therm. Fluid Sci. 144:110845. doi: 10.1016/j.expthermflusci.2023.110845.
  8. Welch, C., L. Illmann, M. Schmidt, and B. Böhm. 2023. Experimental characterization of the turbulent intake jet in an engine flow bench. Exp. Fluids 64:91. doi: 10.1007/s00348-023-03640-9.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fragment of the pressure distribution inside the gas duct of an ejector pulsejet engine during the operating cycle at a velocity of the approaching flow of 60 m/s and a pulsation frequency of 100 Hz: 1 — front end wall; 2 — canopy; 3 — rear end wall of the combustion chamber; and 4 — diffuser

Download (309KB)
3. Fig. 2. Fragment of pressure distribution inside the engine gas duct

Download (334KB)
4. Fig. 3. Motion of the reflected compression wave at the blowdown stroke of engines with normal (a) and inclined (b) end walls. The angle of inclination of the end wall is 20°

Download (93KB)
5. Fig. 4. Distribution of thrust during the operating cycle by elements of the engine gas duct structure with normal front and rear end walls (a) and with the end wall inclined by 20° (b): 1 — total thrust; 2 — front wall; 3 — rear wall; 4 — visor; and 5 — diffuser

Download (100KB)
6. Fig. 5. Engine with honeycomb insert. Dimensions are in millimeters

Download (115KB)
7. Fig. 6. Pressure records of the operating process at an incoming air flow velocity of 60 m/s: (a) ejector pulsejet engine with the axial vortex valve; and (b) the same but with honeycomb insert instead of the axial vortex valve

Download (163KB)
8. Fig. 7. Schematic of the engine with ribs and inclined walls. Dimensions are in millimeters

Download (48KB)
9. Fig. 8. Visualization of the mechanism of influence of the inclined wall and transverse ribs on the thrust from pressure forces

Download (98KB)
10. Fig. 9. Amplitudes of thrust force and fuel consumption pulsations for three types of engines at air velocities of 67 and 125 m/s

Download (79KB)
11. Fig. 10. Change in the character of the operating process of engine type No. 2 when changing the air velocity: (a) 67 m/s; and (b) 125 m/s

Download (237KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).