STUDY OF HIGH-ENTROPY ALLOYS AND THEIR APPLICATION FIELDS

Cover Page

Cite item

Abstract

This paper presents a comprehensive overview of the current research directions in high-entropy alloys (HEAs), encompassing their fundamental aspects, processing routes, strengthening mechanisms, and application fields. The primary mechanisms governing the formation of the microstructure and phase composition in HEAs are analyzed, emphasizing the central role of high configurational entropy in stabilizing single-phase solid solutions and enabling the development of unique properties that surpass those of conventional alloys. The review systematically consolidates four primary research domains: the thermodynamic principles of phase formation, microstructural transformations, mechanical and functional properties, and the development of novel alloy classes and alloying strategies. Particular emphasis is placed on a comparative analysis of various HEA manufacturing methods, ranging from traditional melting and casting technologies—such as vacuum induction melting, vacuum arc remelting, and electroslag remelting—to powder metallurgy routes and modern innovative additive approaches, including selective laser melting, electron beam melting, and laser cladding. The study demonstrates how these diverse synthesis techniques enable control over microstructure, grain size, and phase distribution. The strengthening mechanisms of HEAs are examined, including solid-solution strengthening and precipitation hardening by nanoparticles, as well as the creation of heterogeneous structures and defect-mediated strengthening. These mechanisms are shown to be key to achieving an optimal balance of strength and ductility. The principal areas of practical HEA application are outlined, spanning the aerospace and energy industries to biomedical devices, protective coatings, and catalytic applications. The growing importance of HEAs for service under extreme conditions is highlighted, owing to their exceptional thermal stability and corrosion resistance. In conclusion, the review identifies promising avenues for future research, which include the development of scalable production methods, material standardization, and the implementation of computational models for the accelerated design of new compositions. The necessity of an interdisciplinary approach that integrates advanced manufacturing technologies with fundamental research is underscored, pointing towards broad prospects for the successful implementation of HEAs in high-tech sectors of modern industry.

About the authors

Vladislav K. Drobyshev

Siberian State Industrial University

Author for correspondence.
Email: drobyshev_vk@sibsiu.ru
ORCID iD: 0000-0002-1532-9226
SPIN-code: 9629-4064
Russian Federation

Sergey V. Konovalov

Siberian State Industrial University

Email: konovalov@sibsiu.ru
ORCID iD: 0000-0003-4809-8660
SPIN-code: 4391-7210

Irina A. Panchenko

Siberian State Industrial University

Email: i.r.i.ss@yandex.ru
ORCID iD: 0000-0002-1631-9644
SPIN-code: 4253-6679

References

  1. Ye Y., Wang Q., Lu J., Liu C., Yang Y. High-entropy alloy: challenges and prospects. Materials Today. 2016;19(6):349–362.
  2. https://doi.org/10.1016/J.MATTOD.2015.11.026
  3. Krishna S., Noble N., Radhika N., Saleh B. A comprehensive review on advances in high entropy alloys: Fabrication and surface modification methods, properties, applications, and future prospects. Journal of Manufacturing Processes. 2024;109(2022):583–606.
  4. https://doi.org/10.1016/j.jmapro.2023.12.039
  5. Kaushik N., Meena A., Mali H. High entropy alloy synthesis, characterisation, manufacturing & potential applications: a review. Materials and Manufacturing Processes. 2021;371(1):1–25. https://doi.org/10.1080/10426914.2021.2006223
  6. Nene S., Sinha S., Yadav D., Dutta A. Metallurgical aspects of high entropy alloys. Journal of Alloys and Compounds. 2024;1005:175849. https://doi.org/10.1016/j.jallcom.2024.175849
  7. Zhuo L., Xie Y., Chen B. A review on recent progress of refractory high entropy alloys: from fundamental research to engineering applications. Journal of Materials Research and Technology. 2024;33:1097–1129.
  8. https://doi.org/10.1016/j.jmrt.2024.09.131
  9. Dewangan S., Mangish A., Kumar S., Sharma A., Ahn B., Kumar V. A review on High-Temperature Applicability: A milestone for high entropy alloys. Engineering Science and Technology, an International Journal. 2022;35: 101211.
  10. https://doi.org/10.1016/j.jestch.2022.101211
  11. Sohrabi M., Kalhor A., Mirzadeh H., Rodak K., Kim H. Tailoring the strengthening mechanisms of high-entropy alloys toward excellent strength-ductility synergy by metalloid silicon alloying: A review. Progress in Materials Science. 2024;144:101295.
  12. https://doi.org/10.1016/j.pmatsci.2024.101295
  13. Pandey V., Seetharam R., Chelladurai H. A comprehensive review: Discussed the effect of high-entropy alloys as reinforcement on metal matrix composite properties, fabrication techniques, and applications. Journal of Alloys and Compounds. 2024;1002:175095.
  14. https://doi.org/10.1016/j.jallcom.2024.175095
  15. Коновалов С.В., Дробышев В.К., Панченко И.А., Ли Х. Структура и механические свойства высокоэнтропийных сплавов системы cocrzrmnni, полученных вакуумно-индукционной плавкой, с разным содержанием Zr и Mn. Frontier Materials & Technologies. 2025;(1):21–34.
  16. https://doi.org/10.18323/2782-4039-2025-1-71-2
  17. Ivanov Yu.F., Gromov V.E., Osintsev K.A. Structure and properties of high-entropy FeCoCrNiAl alloy coating. Izvestiya. Ferrous Metallurgy. 2022;65(7):467–470.
  18. https://doi.org/10.17073/0368-0797-2022-7-467-470
  19. Drobyshev V.K. Microstructural and fracto-graphic analysis of non-equiatomic alloy of Co ‒ Cr ‒ Fe ‒ Mn ‒ Ni system. Non-Ferrous Metals. 2024;(2):63–68.
  20. https://doi.org/10.17580/nfm.2024.02.10
  21. Kamal M., Ragunath S., Reddy M., Radhika N., Bassiouny S. Recent Advancements in Lightweight High Entropy Alloys- A Comprehensive Review. International Journal of Lightweight Materials and Manufacture. 2024;7(5):699–720.
  22. https://doi.org/10.1016/j.ijlmm.2024.06.001
  23. Xie X., Li N., Liu W., Huang S., He X., Yu Q., Xiong H., Wang E., Hou X. Research Progress of Refractory High Entropy Alloys: A Review. Chinese Journal of Mechanical Engineering. 2022;35(142). https://doi.org/10.1186/s10033-022-00814-0
  24. Ragunath S., Radhika N., Saleh B. Advance-ments and future prospects of additive manufacturing in high-entropy alloy applications. Journal of Alloys and Compounds. 2024;997:174859. https://doi.org/10.1016/j.jallcom.2024.174859
  25. Nair B., Supekar R., Javid M., Wang W., Zou Y., McDonald A., Mostaghimi J., Stoyanov P. High-Entropy Alloy Coatings Deposited by Thermal Spraying: A Review of Strengthening Mechanisms, Performance Assessments and Perspectives on Future Applications. Metals. 2023;13(3):579. https://doi.org/10.3390/met13030579
  26. Osintsev K.A., Konovalov S.V., Gromov V.E. Research on the structure of Al2.1Co0.3Cr0.5FeNi2.1 high-entropy alloy at submicro- and nano-scale levels. Materials Letters. 2021;294:129717.
  27. https://doi.org/10.1016/j.matlet.2021.129717
  28. Moghaddam A., Shaburova N., Samodurova M., Abdollahzadeh A., Trofimov E. Additive manufacturing of high entropy alloys: A practical review. Journal of Materials Science & Technology. 2021;77:131–162.
  29. https://doi.org/10.1016/j.jmst.2020.11.029
  30. Mehranpour M., Sohrabi M., Jalali A., Kalhor A., Heydarinia A., Aghdam M., Mirzadeh H., Malekan M., Shahmir H., Rodak K., Kim H. Coupling different strengthening mechanisms with transformation-induced plasticity (TRIP) effect in advanced high-entropy alloys: a comprehensive review. Materials Science and Engineering: A. 2025;926:147914.
  31. https://doi.org/10.1016/j.msea.2025.147914
  32. Kumar A., Singh A., Suhane A. Mechanically alloyed high entropy alloys: Existing challenges and opportunities. Journal of Materials Research and Technology. 2022;17:2431–2456. https://doi.org/10.1016/j.jmrt.2022.01.141
  33. Jarlöv A., Zhu Z., Ji W., Gao S., Hu Z., Vivegananthan P., Tian Y., Kripalani D., Fan H., Seet H., Han C., Tan L., Liu F., Nai M., Zhou K. Recent progress in high-entropy alloys for laser powder bed fusion: Design, processing, microstructure, and performance. Materials Science and Engineering: R: Reports. 2024;161:100834. https://doi.org/10.1016/j.mser.2024.100834
  34. Adhikari J., Saha P., Mandal P., Sinha S., Seikh A., Mohammed J., Ghosh M. A Review on High Entropy Alloys as Metallic Biomaterials: Fabrication, Properties, Applications, Challenges, and Future Prospects. Biomedical Materials & Devices. 2025.
  35. https://doi.org/10.1007/s44174-025-00314-4
  36. Castro D., Jaeger, P., Baptista, A., Oliveira, J. An Overview of High-Entropy Alloys as Biomaterials. Metals. 2021;11(4):648. https://doi.org/10.3390/MET11040648
  37. Li W., Xie D., Li D., Zhang Y., Gao Y., Liaw P. Mechanical behavior of high-entropy alloys. Progress in Materials Science. 2021;118:100777 https://doi.org/10.1016/J.PMATSCI.2021.100777
  38. Tang Y., Wang R., Xiao B., Zhang Z., Li S., Qiao J., Bai S., Zhang Y., Liaw P. A review on the dynamic-mechanical behaviors of high-entropy alloys. Progress in Materials Science. 2023;135:101090. https://doi.org/10.1016/j.pmatsci.2023.101090
  39. Zhu Z., Li Z., Liu Z., Gu C., Zhang Q., Wang L. Advanced Development of High-Entropy Alloys in Catalytic Applications. Small methods. 2025. https://doi.org/10.1002/smtd.202500411
  40. Ren J., Chen L., Wang H., Yuan Z. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chemical Society reviews. 2023;52:8319–8373.
  41. https://doi.org/10.1039/d3cs00557g
  42. Liu C., Wang Y., Zhang Y., Wang L. Additively Manufactured High-Entropy Alloys: Exceptional Mechanical Properties and Advanced Fabrication. Acta Metallurgica Sinica (English Letters). 2024;37:3–16.
  43. https://doi.org/10.1007/s40195-023-01644-2
  44. Zhang W., Chabok A., Kooi B., Pei Y. Addi-tive manufactured high entropy alloys: A re-view on the microstructure and properties. Materials & Design. 2022;220:110875.
  45. https://doi.org/10.1016/j.matdes.2022.110875
  46. Cagirici M., Guo S., Ding J., Ramamurty U., Wang P. Additive manufacturing of high-entropy alloys: Current status and challenges. Smart Materials in Manufacturing. 2024;2:100058 https://doi.org/10.1016/j.smmf.2024.100058
  47. Torralba J., Campos M. High Entropy Alloys Manufactured by Additive Manufacturing. Metals. 2020;10(5):639.
  48. https://doi.org/10.3390/met10050639
  49. Gürkan D., Dilibal S. High-entropy alloys in wire arc additive manufacturing: a review. Advanced Manufacturing Research. 2025. https://doi.org/10.21595/amr.2025.24828
  50. Li J., Huang Y., Meng X., Xie Y. A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment. Advanced Engineering Materials. 2019;21.
  51. https://doi.org/10.1002/adem.201900343
  52. Arif Z., Khalid M., Rehman E., Ullah S., Atif M., Tariq A. A review on laser cladding of high-entropy alloys, their recent trends and potential applications. Journal of Manufacturing Processes. 2021; 68:225–273.
  53. https://doi.org/10.1016/j.jmapro.2021.06.041
  54. Shojaei Z., Khayati G., Darezereshki E. Re-view of electrodeposition methods for the preparation of high-entropy alloys. Interna-tional Journal of Minerals, Metallurgy and Materials. 2022;29:1683–1696.
  55. https://doi.org/10.1007/s12613-022-2439-y
  56. Xiong W., Guo A., Zhan S., Liu C., Yeh J., Cao S. Refractory high-entropy alloys: A fo-cused review of preparation methods and properties. Journal of Materials Science & Technology. 2022;142:196–215.
  57. https://doi.org/10.1016/j.jmst.2022.08.046
  58. Soni V., Sinha A. Effect of Alloying Elements, Phases and Heat Treatments on Properties of High-Entropy Alloys: A Review. Transactions of the Indian Institute of Metals. 2022;76. https://doi.org/10.1007/s12666-022-02777-1
  59. Xiao N., Guan X., Wang D., Yan H., Cai M., Jia N., Zhang Y., Esling C., Zhao X., Zuo L. Impact of W alloying on microstructure, me-chanical property and corrosion resistance of face-centered cubic high entropy alloys: A review. International Journal of Minerals, Metallurgy and Materials. 2023;30:1667–1679.
  60. https://doi.org/10.1007/s12613-023-2641-6
  61. Anne B., Shaik S., Tanaka M., Basu A. A crucial review on recent updates of oxidation behavior in high entropy alloys. SN Applied Sciences. 2021;3(336).
  62. https://doi.org/10.1007/s42452-021-04374-1
  63. Dada M., Popoola P., Mathe N. Recent ad-vances of high entropy alloys for aerospace applications: a review. World Journal of Engineering. 2021;20(1):43–74.
  64. https://doi.org/10.1108/wje-01-2021-0040
  65. Pickering E., Carruthers A., Barron P., Mid-dleburgh S., Armstrong D., Gandy A. High-Entropy Alloys for Advanced Nuclear Applications. Entropy. 2021;23(1):98.
  66. https://doi.org/10.3390/e23010098
  67. Lone N., Czerwinski F., Chen D. Present challenges in development of lightweight high entropy alloys: A review. Applied Materials Today. 2024;39:1022996.
  68. https://doi.org/10.1016/j.apmt.2024.102296
  69. Zhu D., Hu S., Fu Y., Zhao N., Liu D. A re-view of preparation methods, friction and wear, corrosion, and biocompatibility of biomedical high-entropy alloys. Journal of Materials Science. 2024; 59:1153–1183.
  70. https://doi.org/10.1007/s10853-023-09314-5
  71. De Oliveira T., Fagundes D., Capellato P., Sachs D., Da Silva A. A Review of Biomaterials Based on High-Entropy Alloys. Metals. 2022;12(11):1940. https://doi.org/10.3390/met12111940
  72. Arun S., Radhika N., Saleh B. Exploring the Potential of High Entropy Alloys: A Comprehensive Review on Microstructure, Properties, and Applications. Johnson Matthey Technology Review. 2023;68(4):549–566.
  73. https://doi.org/10.1595/205651324x17028969538851
  74. Cagirici M., Guo S., Ding J., Ramamurty U., Wang P. Additive manufacturing of high-entropy alloys: Current status and challenges. Smart Materials in Manufacturing. 2024;2:100058 https://doi.org/10.1016/j.smmf.2024.100058
  75. Torralba, J., Campos, M. High Entropy Alloys Manufactured by Additive Manufacturing. Metals. 10(5):639.
  76. https://doi.org/10.3390/met10050639
  77. Gürkan D., Dilibal S. High-entropy alloys in wire arc additive manufacturing: a review. Advanced Manufacturing Research. 2025. https://doi.org/10.21595/amr.2025.24828
  78. Li J., Huang Y., Meng X., Xie Y. A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment. Advanced Engineering Materials. 2019;21(8):1900343. https://doi.org/10.1002/adem.201900343
  79. Xiao N., Guan X., Wang D., Yan H., Cai M., Jia N., Zhang Y., Esling C., Zhao X., Zuo L. Impact of W alloying on microstructure, me-chanical property and corrosion resistance of face-centered cubic high entropy alloys: A review. International Journal of Minerals, Metallurgy and Materials. 2023;30:1667–1679.
  80. https://doi.org/10.1007/s12613-023-2641-6
  81. Miracle D.B. High-entropy alloys: a critical review. Materials Research Letters. 2017;5(1):1–19.

Supplementary files

Supplementary Files
Action
1. JATS XML

Журнал «Вестник Сибирского государственного индустриального университета»

Свидетельство о регистрации: ПИ № ФС77-77872 от 03.03.2020 г.

Журнал имеет международный стандартный номер сериального издания ISSN 2304-4497 (Print) и подписной индекс в каталоге «Урал-Пресс» – 41270

Учредитель:

ФГБОУ ВО «Сибирский государственный индустриальный университет»

Адрес редакции:

654007, Кемеровская обл. – Кузбасс, г. Новокузнецк, Центральный район, ул. Кирова, зд. 42, Сибирский государственный индустриальный университет, каб. 483гт, тел. 8-950-270-44-88

Ответственный за выпуски: Запольская Е.М. 

Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет», г. Новокузнецк, Россия

Исключительные авторские права на статьи принадлежат авторам ©

Обработка персональных данных

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).