DEVELOPMENT AND APPLICATION OF GRANULATE BASED ON 12Х18Н10ТI STAINLESS STEEL POWDER FOR MIM TECHNOLOGY
- Authors: Parkhomenko A.1, Amosov A.1, Pastukhov A.2
-
Affiliations:
- Samara State Technical University
- Penza State University
- Issue: No 3 (2025)
- Section: Статьи
- URL: https://journals.rcsi.science/2304-4497/article/view/381326
- ID: 381326
Cite item
Abstract
Stainless steel powders occupy an important place in modern materials science as a promising raw material for the production of high-precision parts of complex geometry with minimal tolerances. The technology of metal powder casting using polymer binders Metal Injection Molding (MIM), which allows combining the advantages of powder metallurgy and plastic molding, has become the most widespread in industry. The method under consideration is particularly in demand in the manufacture of miniature components for responsible engineering purposes, where traditional processing methods are economically impractical or technologically limited. The key advantages of MIM technology when working with stainless steels are the ability to achieve a density of sintered products up to 95 ‒ 98 % of the theoretical, high repeatability of geometric parameters, as well as a significant reduction in mechanical post-processing. Of particular interest is the use of austenitic stainless steel grade 12X18H10T in MIM technology, as its products combine high corrosion resistance and heat resistance, and can also be used when working in aggressive conditions. The composition and technological parameters of granulate production for the MIM process using domestic materials are studied: 12X18H10T grade steel powders, polyformaldehyde binder and technological additives (stearic acid, beeswax and high-pressure polyethylene). The initial stainless steel powder has a regular spherical particle shape ranging in size from 5 to 25 microns. The use of scanning electron microscopy, determination of melt flow characteristics of thermoplastics, as well as the use of the pycnometric method made it possible to study the microstructure, rheological and physical properties of the obtained granules. It has been established that the samples from the developed granulate comply with the requirements of regulatory documents.
About the authors
Andrei V. Parkhomenko
Samara State Technical University
Author for correspondence.
Email: parhomandr@gmail.com
ORCID iD: 0009-0007-0442-0044
SPIN-code: 3996-1182
Russian Federation
Aleksandr P. Amosov
Samara State Technical University
Email: egundor@yandex.ru
ORCID iD: 0000-0003-1994-5672
SPIN-code: 3429-5946
Alexandr M. Pastukhov
Penza State University
Email: alexpastuch@mail.ru
ORCID iD: 0009-0003-6566-9872
SPIN-code: 5635-6344
References
- German R.M. Powder Metallurgy Science. Princeton, New Jersey, USA: Metal Powder Industries Federation, 1994:472.
- German R.M., Bose A. Injection Molding of Metals and Ceramics. Princeton, New Jersey, USA: Metal Powder Industries Federation, 1997:414.
- Васильев А.И., Путырский С.В., Коротченко А.Ю., Анисимова А.Ю. MIM-технология как способ изготовления точных деталей из металлопорошковых композиций, в том числе титановых сплавов. В кн.: Научно-технический журнал «ТРУДЫ ВИАМ». 2021;3:16‒27. https://dx.doi.org/10.18577/2307-6046-2021-0-3-16-27
- Moghadam M.S., Fayyaz A., Ardestani M. Fabrication of titanium components by lowpressure powder injection moulding using hydride-dehydride titanium powder. Powder Technology. 2021;377:70‒79.
- https://doi.org/10.1016/j.powtec.2020.08.075
- Hu K., Zou L., Shi Q., Hu R., Liu X., Duan B. Effect of titanium hydride powder addition on microstructure and properties of titanium powder injection molding. Powder Technology. 2020;367:225‒232. https://doi.org/10.1016/j.powtec.2020.03.059
- Askari A., Momeni V. Rheological investigation and injection optimization of Fe–2Ni–2Cu feedstock for metal injection molding process. Materials Chemistry and Physics. 2021;271:124926. https://doi.org/10.1016/j.matchemphys.2021.124926
- Пархоменко А.В., Амосов А.П., Самборук А.Р., Игнатов С.В., Костин Д.В., Шультимова А.С. Разработка отечественного порошкового гранулята со связующим на основе по-лиформальдегида для МИМ-технологии. Известия вузов. Порошковая металлургия и функциональные покрытия. 2013;4:8‒13. https://doi.org/10.17073/1997-308X-2013-4-8-13
- Kumar A., Ashish P., Chaudhari P., Vemula P., Kanhu B. S., Nayak C., Date P. P. Effect of powder loading and testing condition on the different properties of metal injection molding parts. Materials Today: Proceedings. 2020;33(8):5492‒5497. https://doi.org/10.1016/j.matpr.2020.03.309
- Wermuth D.P., Paim T.C., Bertaco I., Zanatelli C., Naasani L.I.S., Slaviero M., Driemeier D., Tavares A.C., Martins V., Escobar C.F., Loureiro dos Santos L.A., Schaeffer L., Wink M.A. Mechanical properties, in vitro and in vivo biocompatibility analysis of pure iron po-rous implant produced by metal injection molding: A new eco-friendly feedstock from natural rubber. Materials Science & Engineering. 2021;13:112532. https://doi.org/10.1016/j.msec.2021.112532
- Tafti A.A., Demers V., Vachon G., Brailovski V. Influence of powder size on the moldability and sintered properties of irregular iron-based feedstock used in low-pressure powder injection molding. Powder Technology. 2023;420:118395. https://doi.org/10.1016/j.powtec.2023.118395
- Mukund B.N., Hausnerova B. Variation in particle size fraction to optimize metal injection molding of water atomized 17-4PH stainless steel feedstocks. Powder Technology. 2020;368:130‒136. https://doi.org/10.1016/j.powtec.2020.04.058
- Machaka R., Ndlangamandl P., Seerane M. Capillary rheological studies of 17-4 PH MIM feedstocks prepared using a custom CSIR binder system. PowderTechnology. 2018;326:37‒43. https://doi.org/10.1016/j.powtec.2017.12.051
- Krinitcyn M., Toropkov N., Pervikov A., Glazkova E., Lerner M. Characterization of nano/micro bimodal 316L SS powder obtained by electrical explosion of wire for feedstock application in powder injection molding. Powder Technology. 2021;394:225‒233.
- https://doi.org/10.1016/j.powtec.2021.08.061
- García C., Martín F., Herranz G., Berges C., Romero A Effect of adding carbides on dry sliding wear behaviour of steel matrix composites processed by metal injection moulding. Wear. 2018;414-415:182‒193. https://doi.org/10.1016/j.wear.2018.08.010
- Charpentier N., Barrière T., Bernard F., Boudeau N., Gilbin A., Vikner P. Procedia. PIM-like EAM of steel-tool alloy via bio-based polymer. Procedia CIRP. 2022;108:477–482. https://doi.org/10.1016/j.procir.2022.04.077
- Liu Y., Pan Y., Sun J., Wu X., Zhang J., Kuang F., Lu X. Metal injection molding of high-performance Ti composite using hydride-dehydride (HDH) powder. Journal of Manufacturing Processes. 2023;89:328‒337.
- https://doi.org/10.1016/j.jmapro.2023.01.064
- Thavanayagam G., Swan J. E. A new model for predicting the flow properties of Ti‒6Al‒4V‒MIM feedstocks. Powder Technology. 2022;401:117306. https://doi.org/10.1016/j.powtec.2022.117306
- Dawari C.K., Haq I, Mönkkönen K., Suvanto M., Saarinen J.J. Reduced sliding friction on flat and microstructured metal injection molded (MIM) WC-Co hard metals with MoS2 composite lubricants. Tribology International. 2021;160:107020. https://doi.org/10.1016/j.triboint.2021.107020
- Zhao Z., Liu R., Chen J., Xiong X. Additive manufacturing of cemented carbide using analogous powder injection molding feedstock. International Journal of Refractory Metals and Hard Materials. 2023;111:106095. https://doi.org/10.1016/j.ijrmhm.2022.106095
- Zhang Y., Ma R., Feng S., Cheng L., Davies P.A., Yu P. Microstructures and magnetic properties of Fe-35%Co alloy fabricated by metal injection molding Journal of Magnetism and Magnetic Materials. 2020;497:165982. https://doi.org/10.1016/j.jmmm.2019.165982
- Ma R., Chang L., Dong Y., Ye S., Si J., Yao K., Yu P. Magnetic properties of soft magnetic composites fabricated by injection molding of bimodal amorphous Fe73Si11B11C3Cr2 and crystalline Fe50Co50 powders. Powder Technology. 2022;397:116986.
- https://doi.org/10.1016/j.powtec.2021.11.030
- Naranjo J.A., Berges C., Campana R., Herranz G. Rheological and mechanical assessment for formulating hybrid feedstock to be used in MIM & FFF. Results in Engineering. 2023;19:101258. https://doi.org/10.1016/j.rineng.2023.101258
- Пархоменко А.В., Амосов А.П., Самборук А.Р. Развитие применения металлических порошков для MIM-технологии. В кн.: Высокие технологии в машиностроении: Материалы XXI Всероссийской научно-технической конференции с международным участием. Самара: изд. Самарского гос. техн. ун-та. 2024:285–289.
Supplementary files
