FEATURES OF LOCALIZED DEFORMATION IN ALUMINUM-MAGNESIUM ALLOY WITH WELDED SEAM

Cover Page

Cite item

Abstract

Welding technologies for layer composite are among the research priorities for the development of special structural materials with unique property combinations. A novel technology for producing permanent joints of metals and alloys with limited weldability is electron beam additive manufacturing. The development of new production processes requires the study of the effect of structural and phase heterogeneity in multilayer materials on their deformation behavior. An important scientific topic in this regard is the influence of the formed interface in the material on the process of plastic deformation. The kinetics of deformation fronts in an aluminum-magnesium alloy with structural inhomogeneity in the form of a weld seam obtained by friction stir welding is investigated. It is found that intermittent plastic flow is realized on the deformation curve in the samples in the initial state and after heat treatment. In addition, a yield plateau appears on the deformation curve in the annealed samples. During deformation of the annealed samples, the weld area divides the sample into sections of the base metal, where the Luders deformation occurs, and a stir zone, where localization of deformation in the yield plateau section does not occur. At the stage of intermittent plastic flow, the deformation process in both states occurs in a localized manner by nucleation and periodic propagation of deformation fronts over the entire working area of the sample. The kinetics of the fronts can be described within the framework of the autowave concept of plastic deformation similarly to homogeneous materials.

About the authors

Dina V. Orlova

Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: dvo@ispms.ru
ORCID iD: 0000-0003-0068-2542
Russian Federation

Vadim V. Gorbatenko

Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences

Email: gvv@ispms.ru
ORCID iD: 0000-0001-6464-6159

Timur S. Nemlienko

Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences

Email: tsn4@tpu.ru
ORCID iD: 0009-0005-2203-7351

Nikolay N. Sorokov

Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences

Email: sorokov105@gmail.com
ORCID iD: 0009-0009-9901-9089

References

  1. Шибков А.А., Золотов А.Е., Михлик Д.В., Желтов М.А., Шуклинов А.В., Аверков В.А., Денисов А.А. Кинетика и морфология полос деформации на начальной стадии потери устойчивости пластического течения сплава АМг6. Деформация и разрушение материалов. 2009;8:23–30.
  2. Панин В.Е., Дерюгин Е.Е. Мезомеханика формирования полосовых структур на мезо- и макромасштабных уровнях. Физика металлов и металловедение. 2003;6:1–15.
  3. Benallal A., Berstad T., Børvik T., Hopperstad O.S., Koutiri I., Nogueira de Codes R. An experi-mental and numerical investigation of the behaviour of AA5083 aluminium alloy in presence of the Portevin–Le Chatelier effect. International Journal of Plasticity. 2008;24:1916–1945. https://doi.org/10.1016/j.ijplas.2008.03.008
  4. Трусов П.В., Чечулина Е.А. Прерывистая текучесть: физические механизмы, экспериментальные данные, макрофеноменологические модели. Вестник ПНИПУ. 2014;3:186‒232. https://doi.org/10.15593/perm.mech/2014.3.10
  5. Зуев Л.Б., Хон Ю.А., Горбатенко В.В. Фи-зика неоднородного пластического тече-ния. Москва: Физматлит, 2024:320.
  6. Zuev L. B., Barannikova S. A., Danilov V. I., Gorbatenko V. V. Plasticity: from Crystal Lattice to Macroscopic Phenomena. Progress in Physics of Metals. 2021;22:3–57. https://doi.org/10.15407/ufm.22.01.003
  7. Зуев Л.Б. Автоволновая пластичность. Локализация и коллективные моды. Москва: Физматлит, 2018:208.
  8. Danilov V.I., Orlova D.V., Gorbatenko V.V., Danilova L.V. Effect of temperature on the kinetics of localized plasticity autowaves in Lüders deformation. Metals. 2023;13:773. https://doi.org/10.3390/met13040773
  9. Danilov V.I., Zuev L.B., Gorbatenko V.V., Orlova D.V., Danilova L.V. Autowave description of the Lüders and Portevin-Le Chatelier phenomena Rus-sian Physics Journal. 2022;65(7):1411‒1418. https://doi.org/10.1007/s11182-023-02784-9
  10. Гусарова А.В., Рубцов В.Е., Колубаев Е.А., Бакшаев В.А., Никитин Ю.В. Влияние направления проката АМг5 на микроструктуру и свойства сварных соединений, полученных сваркой трением с перемешиванием. Обработка металлов (технология, оборудование, инструменты). 2020;22(4):124–136. https://doi.org/10.17212/1994-6309-2020-22.4-124-136
  11. Калиненко А.А., Миронов С.Ю., Высоцкий И.В., Малафеев С.С. Влияние режима сварки трением с перемешиванием на термическую стабильность сплава АД33. Frontier Materials and Technologies. 2022;1:31–39. https://doi.org/10.18323/2782-4039-2022-1-31-39
  12. Tarasov S.Y., Rubtsov V.E., Kolubaev E.A. A proposed diffusion-controlled wear mechanism of alloy steel friction stir welding (FSW) tools used on an aluminum alloy. Wear. 2014;318:130–134. https://doi.org/10.1016/j.wear.2014.06.014
  13. Kumar K., Kailas Satish V. The role of friction stir welding tool on material flow and weld formation. Materials Science and Engineering: A. 2008;485(1-2):367‒374.
  14. https://doi.org/10.1016/j.msea.2007.08.013
  15. Mishra R.S., Ma Z.Y. Friction Stir Welding and Processing. Materials Science and Engi-neering: Reports. 2005;50:1–78.
  16. https://doi.org/10.1016/j.mser.2005.07.001
  17. Jacquina D., Guillemot G. A review of microstructural changes occurring during FSW in aluminium alloys and their modelling. Journal of Materials Processing Technology. 2021;288:16706. https://doi.org/10.1016/j.jmatprotec.2020.116706
  18. Rigney D.A Transfer, mixing and associated chemi-cal and mechanical processes during the sliding of ductile materials. Wear. 2000;245(1-2):1‒9. https://doi.org/10.1016/S0043-1648(00)00460-9
  19. Sutton M.A., Orteu J.-J., Schreier H.W. Image Correlation for Shape, Motion and Deformation Measurements-Basic Concepts, Theory and Applications. Berlin: Springer; 2009:317. https://doi.org/10.1007/978-0-387-78747-3
  20. Zuev L.B., Gorbatenko V.V., Pavlichev K.V. Elaboration of speckle photography techniques for plastic flow analyses. Measurement Science and Technology. 2010;21(5):054014. https://doi.org/10.1088/0957-0233/21/5/054014
  21. Данилов В.И., Смирнов А.Н., Горбатенко В.В., Орлова Д.В., Данилова Л.В. Деформация Людерса в сварных соединениях. Известия вузов. Черная металлургия. 2018;61(2):128‒134.
  22. McCormick P.G. A Model for the Portevin-Le Chatelier Efffect in Substitutional Alloys. Acta Metallurgica. 1972;20(3):351‒354.
  23. https://doi.org/10.1016/0001-6160(72)90028-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Журнал «Вестник Сибирского государственного индустриального университета»

Свидетельство о регистрации: ПИ № ФС77-77872 от 03.03.2020 г.

Журнал имеет международный стандартный номер сериального издания ISSN 2304-4497 (Print) и подписной индекс в каталоге «Урал-Пресс» – 41270

Учредитель:

ФГБОУ ВО «Сибирский государственный индустриальный университет»

Адрес редакции:

654007, Кемеровская обл. – Кузбасс, г. Новокузнецк, Центральный район, ул. Кирова, зд. 42, Сибирский государственный индустриальный университет, каб. 483гт, тел. 8-950-270-44-88

Ответственный за выпуски: Запольская Е.М. 

Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет», г. Новокузнецк, Россия

Исключительные авторские права на статьи принадлежат авторам ©

Обработка персональных данных

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).