EFFECT OF ELECTRON BEAM TREATMENT ON THE STRUCTURE AND PROPERTIES OF PLASMA COATING OF HIGH-SPEED MOLYBDENUM STEEL

Cover Page

Cite item

Abstract

The structure and properties of the surface of a plasma-deposited layer in a nitrogen environment of high-speed molybdenum steel on a substrate of medium-carbon steel grade 30KhGSA were studied using modern physical materials science methods. The deposited layer was irradiated with pulsed electron beams with the following parameters: energy density of 30 J/cm2, duration of one exposure of 50 μs, frequency of 0.3 Hz, number of pulses of 10. In the initial state, the surface layers contain a polycrystalline structure of the dendritic type with a non-uniform distribution of molybdenum, chromium, aluminum, nitrogen and oxygen, surrounded by a developed network of ledeburite eutectic. The relative content of elements (except for Mn, C and O2) decreases as it approaches the substrate. The microhardness of the deposited layer is 5.6 MPa, which increases to 6.2 MPa after a single high-temperature tempering, and to 7.2 MPa after a double tempering. Electron-beam pulsed action performed after a double high-temperature tempering modifies the structure and properties. A quasi-homogeneous distribution of alloying elements, the formation of a fine-grained structure with a grain size of 4 ‒ 6 μm, in the volume of which lamellar martensite was found, were revealed. The previously formed structure of dendritic crystallization is not observed. The microhardness of the deposited layer after electron-beam treatment increases and reaches 8.7 MPa, which is almost 2 times higher than the microhardness of the substrate. The revealed patterns of change in nanohardness and Young's modulus from the distance to the irradiation surface confirm the developed ideas about the nature of hardening of the plasma deposited layer of high-speed molybdenum steel.

About the authors

Irina V. Baklushina

Siberian State Industrial University

Author for correspondence.
Email: baklushina_iv@sibsiu.ru
ORCID iD: 0000-0003-4487-3260
SPIN-code: 9087-6310
Russian Federation

Anastasia N. Gostevskaya

Siberian State Industrial University

Email: gostevskaya_an@sibsiu.ru
ORCID iD: 0000-0002-7328-5444
SPIN-code: 2230-2454

Viktor E. Gromov

Siberian State Industrial University

Email: gromov@physics.sibsiu.ru
ORCID iD: 0000-0002-5147-5343
SPIN-code: 2834-4090

Yuri F. Ivanov

Institute of High-Current Electronics SB RAS

Email: yufi55@mail.ru
ORCID iD: 0000-0003-0271-5504
SPIN-code: 7576-4810

Aleksandr S. Chapaykin

Siberian State Industrial University

Email: thapajkin.s@yandex.ru
ORCID iD: 0009-0009-8160-7827
SPIN-code: 4488-3030

References

  1. Кремнев Л.С., Онегина А.К., Виноградова Л.А. Особенности превращений, структуры и свойств молибденовых быстрорежущих сталей. Металловедение и термическая обработка металлов. 2009;12(654):13‒19.
  2. Кремнев Л.С. Теория легирования и создание на ее основе теплостойких инструментальных сталей и сплавов. МиТОМ. 2008;11:18‒28.
  3. Chaus A.S., Pokorný P., Čaplovič Ľ., Sitke- vich M.V., Peterka J. Complex fine-scale diffusion coating formed at low temperature on high-speed steel substrate. Appl. Surf. Sci. 2018;437:257–270.
  4. Gerth J., Wiklund U. The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel. Wear. 2008;264:885–892.
  5. Купалова И.К. Фазовый анализ и фазовый состав быстрорежущих сталей (обзор). Заводская лаборатория. 1983;1:27‒40.
  6. Emelyushin A.N., Petrochenko E.V., Nefed′ev S.P. Inverstigation of the structure and impact-abrasive resistance of coatings of the Fe-C-Cr-Mn-Si system, additionally alloyed with nitrogen. Welding International. 2013;27(2):150‒153.
  7. Нефедьев С.П., Емелюшин А.Н. Влияние азота на формирование структуры и свойств плазменных покрытий типа 10Р6М5. Вестник Югорского государственного университета. 2021;3(62):33‒45.
  8. Емелюшин А.Н., Петроченко Е.В., Нефе-дьев С.П. Исследование структуры и ударно-абразивной износостойкости покрытий системы Fe ‒ C ‒ Cr ‒ Mn ‒ Si, дополнительно легированных азотом. Сварочное производство. 2011;10:18‒22.
  9. Нефедьев С.П., Емелюшин А.Н. Плазменное упрочнение поверхности. Старый Оскол: ТНТ, 2021:156.
  10. Мозговой И.В., Шнейдер Е.А. Наплавка быстрорежущей стали. Омск: Изд-во «ОмГТУ», 2016:200.
  11. Ivanov Yu.F., Gromov V.E., Potekaev A.I., Guseva T.P., Chapaikin A.S., Vashchuk E.S., Romanov D.A. Structure and properties of R18U surfacing of high-speed steel after its high tempering. Russian Physics Journal. 2023;66(7);731‒739. https://doi.org/10.1007/s11182-023-02999-w
  12. Rakhadilov B.K., Zhurerova L.G., Schef- fler M., Khassenov A.K. Change in high temperature wear resistance of high speed steel by plasma nitriding. Bulletin of the Karaganda University. Physics Series. 2018;3(91):59–65. EDN: KJWHYN.
  13. Aleksandrovich B.L., Geller Yu.A., Kremnev L.S. New high-hardness high-speed steels. Metal Science and Heat Treatment. 1968;1:2‒7.
  14. Барчуков Д.А., Цыгвинцев А.В., Афанасье- ва Л.Е. Особенности формирования структуры и свойств быстрорежущей стали при импульсно-дуговой наплавке. Вестник Тверского государственного университета. 2019;4(4):16‒22.
  15. Barchukov D.A., Ilyashenko S.E., Lavrent’ev A.Yu., Zubkov N.S. Improvement of the structural state of high-speed steel to enhance hardening efficiency during heat treatment. Metal Science and Heat Treatment. 2013;17:6‒9.
  16. Иванов Ю.Ф. Структурные и фазовые превращения в ряде сталей при статическом и динамическом режимах термической обработки: автореф. диссертации д.ф.-м.н. Москва, 2002:41.
  17. Mishigdorzhiyn U., Semenov A., Ulakha- nov N. et al. Microstructure and Wear Re-sistance of Hot-Work Tool Steels after Elec-tron Beam Surface Alloying with B4 C and Al. Lubricants. 2022;10(5).
  18. https://doi.org/10.3390/lubricants10050090; EDN: XTTOFB.
  19. Chen X., Konovalov S., Gromov V., Ivanov Yu. Modifying of Structure-Phase States and Properties of Metals by Concentrated Energy Flows. In: Surface Processing of Light Alloys Subject to Concentrated Energy Flows. 2021:1‒52.
  20. Rotshtein V.P., Proskurovsky D.I., Ozur G., Ivanov Yu., Markov A. Surface modification and alloying of metallic materials with low-energy high-current electron beams. Surface and Coatings Technology. 2004;180:377‒381. https://doi.org/10.1016/j.surfcoat.2003.10.085
  21. Khaidarova A.A., Silantiev S.A. Laser Treat-ment on the Coating Surface Having Been Performed by Means of Plasma Surfacing With Powder Made of M2 Steel. In: IOP Conference Series: Materials Science and Engineering: electronic edition. Yurga: IOP Publishing Ltd, 2016:12062. https://doi.org/10.1088/1757-899X/142/1/012062
  22. Samotugin S.S., Butsukin V.V. Increasing of the Service Life of Massive Tools Using Combined Restoration and Hardening Technologies. Russian Engineering Research. 2024;44(8):1154‒1160. https://doi.org/10.3103/S1068798X24701934

Supplementary files

Supplementary Files
Action
1. JATS XML

Журнал «Вестник Сибирского государственного индустриального университета»

Свидетельство о регистрации: ПИ № ФС77-77872 от 03.03.2020 г.

Журнал имеет международный стандартный номер сериального издания ISSN 2304-4497 (Print) и подписной индекс в каталоге «Урал-Пресс» – 41270

Учредитель:

ФГБОУ ВО «Сибирский государственный индустриальный университет»

Адрес редакции:

654007, Кемеровская обл. – Кузбасс, г. Новокузнецк, Центральный район, ул. Кирова, зд. 42, Сибирский государственный индустриальный университет, каб. 483гт, тел. 8-950-270-44-88

Ответственный за выпуски: Запольская Е.М. 

Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет», г. Новокузнецк, Россия

Исключительные авторские права на статьи принадлежат авторам ©

Обработка персональных данных

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).