DETERMINATION OF HEAT AND MASS TRANSFER CHARACTERISTICS IN THE PROCESS OF DECARBONIZATION OF THE CONVERTER BATHS. MESSAGE 3
- Authors: Protopopov E.1, Fat'yanov S.1, Zapol'skaya E.1
-
Affiliations:
- Siberian State Industrial University
- Issue: No 4 (2025)
- Section: Статьи
- URL: https://journals.rcsi.science/2304-4497/article/view/380625
- ID: 380625
Cite item
Abstract
High-temperature experimental studies performed using two-chamber models of oxygen converters are devoted to the analysis and study of processes in a converter bath under various modes of combined purging with the supply of mixing neutral gas through the bottom. During the processing of experimental data, the values of changes in the transient and critical carbon concentrations in the melt were determined depending on the conditions and especially the purge mode, the height of the oxygen tuyere and the layout of the nozzles in the bottom. Bottom purging with neutral gas with a flow rate of 0.05 – 0.20 m3/(t∙min), while improving the mixing of the bath, reduces the transient carbon concentrations in the range from 0.9 ‒ 1.2 % for upper purging conditions to 0.4 – 0.5 % for combined purging, starting from which oxygen unused for the oxidation of impurities in the reaction zone begins to intensively calculate the volume of the melt. Based on the experimental data obtained to determine the mass transfer coefficients in the melt, the effective carbon diffusion coefficients for various melting conditions and periods were estimated depending on the steady-state melt circulation parameters and the characteristic dimensions of the steelmaking bath using accepted assumptions and using analytical models obtained by analyzing the shape of the reaction zone and the interaction of gas jets with the melt. Calculation formulas have been obtained and calculations of the characteristics of mass transfer processes in a conversion bath have been performed after reducing the carbon concentration below the transition values determined experimentally. The values of effective diffusion coefficients for laboratory converters have been obtained, which are 20 ‒ 270 cm2/s, based on the characteristics of industrial converters with a capacity of 160 tons, which are 800 ‒ 2700 cm2/s. The information obtained can be used to optimize the designs of aggregates and the technology of combined purging.
About the authors
Evgenii V. Protopopov
Siberian State Industrial University
Author for correspondence.
Email: protopopov@sibsiu.ru
ORCID iD: 0000-0002-7554-2168
SPIN-code: 9775-0226
Russian Federation
Sergei S. Fat'yanov
Siberian State Industrial University
Email: vestnicsibgiu@sibsiu.ru
Ekaterina M. Zapol'skaya
Siberian State Industrial University
Email: beloglazova-ekat@mail.ru
ORCID iD: 0000-0002-8098-5895
SPIN-code: 7302-2751
References
- Протопопов Е.В., Уманский А.А., Беленецкий Е.А., Фатьянов С.С., Полежаев С.А., Запольская Е.М. Анализ условий подобия и методики высокотемпературного моделирования конвертерных процессов. Сообщение 1. Вестник Сибирского государственного индустриального университета. 2025;2(52):75‒84. http://doi.org/10.57070/2304-4497-2025-2(52)-75-84
- Протопопов Е.В., Фатьянов С.С., Запольская Е.М. Высокотемпературное моделирование процесса обезуглероживания конвертерной ванны при верхней и комбинированной продувке расплава. Сообщение 2. Вестник Сибирского государственного индустриального университета. 2025;3(53):82–93.
- http://doi.org/10.57070/2304-4497-2025-3(53)-82-93
- Протопопов Е.В., Щипанов С.С., Фатьянов С.С. Экспериментальные исследования обезуг-лероживания конвертерной ванны при комбинированной продувке расплава. В кн.: Сборник трудов XVIII международного конгресса сталеплавильщиков и производителей металла. 7-10 апреля 2025. Санкт-Петербург, 2025:182‒189.
- Григорович К.В. Металлургия XXI века: современное состояние и направления развития. В кн.: Труды XIV международного конгресса сталеплавильщиков. Москва ‒ Электро-сталь, 17-21 октября 2016 г. Москва: ООО «РПК ПринтАП», 2016:56‒65.
- Фейлер С.В., Протопопов Е.В., Чернятевич А.Г. Совершенствование технологии комбини-рованной продувки конвертерной ванны кислородом и нейтральным газом. Известия вузов. Черная металлургия. 2014;4:43‒50. EDN: SBYPGZ
- Чернятевич А.Г., Протопопов Е.В. Разра-ботка наконечников двух контурных фурм для кислородных конвертеров. Известия вузов. Черная металлургия. 1995;12:13–17.
- Протопопов Е.В., Чернятевич А.Г., Лаврик Д.А., Мастеровенко Е.Л. Исследование структуры и параметров реакционных зон при верхней продувке применительно к проектированию многоцелевых конвертерных фурм. Известия вузов. Черная металлургия. 2002;12:16‒21. EDN: SIXMJT.
- Lehner J., Egger M.W., Panhofer H., Strelbisky M.J. First operating experiences with post-combustion lances at BOF SHOP LD3. European Steel Technology and Application Days 2017 (ESTAD 2017). Vienna. Austria. 26-29 June 2017. 2017;1(3):1148‒1157.
- Dering D., Swartz C., Dogan N. Dynamic Modeling and Simulation of Basic Oxygen Furnace (BOF) Operation. Processes. 2020;8(4):483. http://doi.org/10.3390/pr8040483
- EDN: KMPSKB
- Vortrefflich W., Vries J. Maximizing BOF production capacity and producing cost effi-cient by using sublance based process control. Iron & Steel Review. 2010;10:94‒100.
- Apeldoorn G.J., Gootjes P. Sublances for BOF steelmaking. In: Millennium Steel. 2006:97‒101.
- Pal J., Singh S., Ghose A.K., Mohan S. A mathematical model for end point control of basic oxygen steelmaking furnace. Journal of Metallurgy and Materials Science. 2002;44(1):39‒49.
- Белов Г.В., Трусов Б.Г. Термодинамическое моделирование химически реагирующих систем. Москва: Изд. МГТУ им. Н.Э. Баумана; 2013;96.
- Zhiyong Liu, Alberto N. Conejo. Development of a Novel Dimensionless Relationship to Describe Mass Transfer in Ladles Due to Bottom Gas Injection. Processes. 2025;13:5. https://doi.org/10.3390/pr13010005
- Martín M., Rendueles M., Día M. Steel-Slag Mass Transfer in Steel Converter, Bottom and Top/Bottom Combined Blowing Through Cold Model Experiments. Chemical Engineering Research and Design. 2005;83(9):1076‒1084. https://doi.org/10.1205/cherd.02156
- Cunha A.P., Pacianotto T.A., Frottini Fileti A.M. Steel-making process: Neural models improve end-point predictions. Computer Aided Chemical Engineering. 2004;18(4):631‒636. http://doi.org/10.1016/S1570-7946(04)80171-8
- Gu M., Xu A., Wang H., Wang Z. Real-time dynamic carbon content prediction model for second blowing stage in BOF based on CBR and LSTM. Processes. 2021;9(11):1987. http://doi.org/10.3390/pr9111987 EDN: ELGMRV
- Wiltschi K., Pinz A., Lindeberg T. An auto-matic assessment scheme for steel quality inspection. Machine Vision and Applications. 2000;12(3):113‒128.
- Wu M., Wu F. Application of using dynamic control with off-gas analysis for making medium-high carbon steel. Iron and Steel. 2007;42(12):38‒41.
- Vortrefflich W., Vries J. Maximizing BOF production capacity and producing cost effi-cient by using sublance based process control. Iron & Steel Review. 2010;10:94‒100.
- Zhou Wang*, Shuang Chen, Congcong Wu, Nan Chen, Jiwen Li, and Qing Liu. Effect of bottom stirring on bath mixing and transfer behavior during scrap melting in BOF steelmaking: A review. High Temperature Materials and Processes. 2024;43:20220322. https://doi.org/10.1515/htmp-2022-0322
Supplementary files
