DETERMINATION OF THE EFFECT OF THE UMP STRUCTURE IN Ti – Nb ALLOY ON FATIGUE STRENGTH

Cover Page

Cite item

Abstract

Research related to the assessment of the cyclic durability of the developed structural materials for medicine and technology is an urgent task. One of the promising areas of medical materials science is the development of biocompatible β-alloys based on titanium with a Young's modulus comparable to values for cortical bone tissue (2 ‒ 23 GPa), including ultrafine-grained (UMZ) alloys. The patterns of fatigue failure for biocompatible UMS titanium alloys with low modulus of elasticity for multi- and gigacycle fatigue modes have been poorly studied and require detailed analysis. A study of the features of the destruction of a biocompatible Ti ‒ 45 wt alloy has been performed. % Nb in the UMZ and coarse-crystalline (KK) state during gigacycle fatigue tests on the Shimadzu USF-2000 ultrasonic resonant loading machine. The UMZ alloy was obtained by the combined abc-pressing method with multi-pass rolling. It has been established that the formation of a multiphase UMZ structure in the Ti – 45 wt alloy. % Nb leads to an increase in the fatigue limit by 1.5 times in comparison with the CC structure. The fracture surface of alloy samples in UMP and CC states in the nucleation and crack initiation zones was studied by electron scanning and transmission microscopy. It was established that the morphology of the surface of the samples after the destruction of titanium in the CC and UMZ states is similar. The nucleation and propagation zones of the crack have a macrobursted structure consisting of facets and a dimpled microrelief. It is shown that as a result of the destruction during gigacyclic tests in the QC state of the Ti – 45 alloy by weight. % Nb has formed a cellular-mesh dislocation substructure, and in the UMZ state, a fragmented substructure.

About the authors

Anna Yu. Eroshenko

Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: eroshenko@ispms.ru
ORCID iD: 0000-0001-8812-9287
SPIN-code: 4097-7039
Russian Federation

Ivan A. Gluhov

Siberian Branch of the Russian Academy of Sciences

Email: gia@ispms.ru
ORCID iD: 0000-0001-5557-5950
SPIN-code: 4584-1195

Aleksei I. Tolmachev

Siberian Branch of the Russian Academy of Sciences

Email: tolmach@ispms.ru
ORCID iD: 0000-0003-4669-8478

Pavel V. Uvarkin

Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences

Email: uvarkin@ispms.ru
ORCID iD: 0000-0003-1169-3765
SPIN-code: 4944-4711

Yurii P. Sharkeev

Siberian Branch of the Russian Academy of Sciences

Email: sharkeev@ispms.ru
ORCID iD: 0000-0001-5037-245X
SPIN-code: 1844-5410

References

  1. Baltatu M.S., Vizureanu P., Sandu A.V., Solcan C., Hritcu L.D., Spataru M.C. Research progress of titanium-based alloys for medical devices. Biomedicines. 2023;11:2997.
  2. https://doi.org/10.3390/biomedicines11112997
  3. Abd-Elaziem W., Darwish M.A., Hamada A., Daoush W.M. Titanium-based alloys and composites for orthopedic implants applications: a comprehensive review. Materials & Design. 2024;241:112850. https://doi.org/10.1016/j.matdes.2024.112850
  4. Sun B., Sun K., Meng X., Wang J. Size effect on the martensitic transformation of Ti – Nb shape memory alloy. Intermetallics. 2022;145:107562. https://doi.org/10.1016/j.intermet.2022.107562
  5. Bignona M., Bertrand E., Rivera-Díaz-del-Castillo P.E.J., Tancret F. Martensite formation in titanium alloys: crystallographic and compositional effects. Journal of Alloys and Compounds. 2021;872:159636.
  6. https://doi.org/10.1016/j.jallcom.2021.159636
  7. Liu K.Y., Yin L.X., Lin X., Liang S.X. Development of low elastic modulus titanium alloys as implant biomaterials. Recent Progress in Materials. 2022;4(2).
  8. https://doi.org/10.21926/rpm.2202008
  9. Marin E., Lanzutti A. Biomedical applications of titanium alloys: a comprehensive review. Materials. 2024;17:114.
  10. https://doi.org/10.3390/ma17010114
  11. Valiev R.Z., Alexandrov I.V., Kawasaki M., Langdon T.G. Ultrafine-grained materials. Cham: Springer International Publishing; 2024:451. https://doi.org/10.1007/978-3-031-31729-3
  12. Picak S., Wegener T., Sajadifar S.V., Sobrero C. On the low-cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure. Acta Materialia. 2021;205:116540. https://doi.org/10.1016/j.actamat.2020.116540
  13. Du B., Sheng L., Cui C., Hu Z., Sun X. Effects of grain refinement on the low-cycle fatigue behavior of IN792 superalloys. Crystals. 2021;11:892. https://doi.org/10.3390/cryst11080892
  14. Ledon D.R., Bannikov M.V., Oborin V.A., Bayandin Yu.V., Naimark O.B. Prediction of the fatigue life of VT1-0 titanium in various structural states under very high cycle fatigue. Letters on Materials. 2021;11(4):422–426. https://doi.org/10.22226/2410-3535-2021-4-422-426
  15. Sharkeev Yu., Eroshenko A., Legostaeva E., Kovalevskaya Z., Belyavskaya O., Khimich M., Epple M., Prymak O., Sokolova V., Zhu Q., Sun Z., Zhang H. Development of ultrafine-grained and nanostructured bioinert alloys based on titanium, zirconium and niobium and their microstructure, mechanical and biological properties. Metals. 2022;12(7):1136.
  16. https://doi.org/10.3390/met12071136
  17. Gatina S., Polyakova V., Modina Yu.M., Se-menova I.P. Fatigue behavior and fracture features of Ti-15Mo alloy in β-, (α+β)-, and ultrafine-grained two-phase states. Metals. 2023;13:580. https://doi.org/10.3390/met13030580
  18. Naydenkin E., Mishin I.P., Ratochka I.V., Oborin V. Fatigue and fracture behavior of ultrafine-grained near β titanium alloy produced by radial shear rolling and subsequent aging. Materials Science and Engineering A. 2021;810:140968. https://doi.org/10.1016/j.msea.2021.140968
  19. Bannikov M., Oborin V., Bilalov D.A., Naimark O.B. Nonlinear dynamics and stages of damage of Ti6Al4V and Ti45Nb titanium alloys in very high cycle fatigue. PNRPU Mechanics Bulletin. 2020;2:145–153. https://doi.org/10.15593/perm.mech/2020.2.12
  20. Oborin V., Bayandin Yu., Bannikov M., Savinykh A.S. Prediction of titanium alloy Ti-6Al-4V lifetime under consecutive shock-wave and gigacycle fatigue loads. Procedia Structural Integrity. 2021;32:152–157.
  21. https://doi.org/10.1016/j.prostr.2021.09.022
  22. Edalati K., Bachmaier A., Beloshenko V.A. et al. Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters. 2022;10(4):163–256. https://doi.org/10.1080/21663831.2022.2029779
  23. Glezer A.M., Kozlov E.V., Koneva N.A., Popova N.A., Kurzina I.A. Plastic deformation of nanostructured materials. Boca Raton: CRC Press; 2017:334.
  24. ASTM E1382-97. Standard test methods for determining average grain size using semiautomatic and automatic image analysis. West Conshohocken, PA: ASTM International; 2016:24.
  25. Naimark O., Bayandin Yu., Uvarov S. Critical dynamics of damage-failure transition in wide range of load intensity. Acta Mechanica. 2021;232(4):1329–1345. https://doi.org/10.1007/s00707-020-02922-1
  26. Naimark O., Oborin V., Bannikov M., Ledon D. Critical dynamics of defects and mechanisms of damage-failure transitions in fatigue. Materials. 2021;14(10):2554. https://doi.org/10.3390/ma14102554
  27. Mahmood A., Sun C., Lashari M.I., Li W. Microstructure-based interior cracking behavior of α + β titanium alloy under two stress ratios and intermediate temperature in the very high-cycle fatigue regime. Journal of Materials Science. 2024;59(27):1–20. https://doi.org/10.1007/s10853-024-09892-y
  28. Klevtsov G.V., Valiev R.Z., Klevtsova N.A., Tyurkov M.N., Pigaleva I.N., Aksenov D.A. Fracture kinetics and mechanisms of ultrafine-grained materials during fatigue tests in the low-cycle fatigue region. Metals. 2023;13:709. https://doi.org/10.3390/met13040709
  29. Shanyavskiy A.A., Soldatenkov A.P. Metallic materials fatigue behavior: scale levels and ranges of transition between them. International Journal of Fatigue. 2022;158:106773. https://doi.org/10.1016/j.ijfatigue.2022.106773
  30. Pan X., Xu S., Nikitin A., Shanyavskiy A. Crack initiation induced nanograins and facets of a titanium alloy with lamellar and equiaxed microstructure in very-high-cycle fatigue. Materials Letters. 2023;357:135769.
  31. https://doi.org/10.1016/j.matlet.2023.135769
  32. Рыбин В.В. Большие пластические деформации и разрушение металлов. Москва: Металлургия, 1986:224.
  33. Avateffazeli M., Webster G., Tahmasbi K., Haghshenas M. Very high cycle fatigue at elevated temperatures: a review on high temperature ultrasonic fatigue. Journal of Space Safety Engineering. 2022;9(6).
  34. https://doi.org/10.1016/j.jsse.2022.07.006
  35. Shanyavskiy A.A., Nikitin A.D., Palin-Luc T. Very high cycle fatigue of D16T aluminum alloy. Physical Mesomechanics. 2021;24(1):122–129. https://doi.org/10.1134/S1029959921010112

Supplementary files

Supplementary Files
Action
1. JATS XML

Журнал «Вестник Сибирского государственного индустриального университета»

Свидетельство о регистрации: ПИ № ФС77-77872 от 03.03.2020 г.

Журнал имеет международный стандартный номер сериального издания ISSN 2304-4497 (Print) и подписной индекс в каталоге «Урал-Пресс» – 41270

Учредитель:

ФГБОУ ВО «Сибирский государственный индустриальный университет»

Адрес редакции:

654007, Кемеровская обл. – Кузбасс, г. Новокузнецк, Центральный район, ул. Кирова, зд. 42, Сибирский государственный индустриальный университет, каб. 483гт, тел. 8-950-270-44-88

Ответственный за выпуски: Запольская Е.М. 

Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет», г. Новокузнецк, Россия

Исключительные авторские права на статьи принадлежат авторам ©

Обработка персональных данных

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).