MODERN ASPECTS OF STUDYING THE EFFECT OF EXTERNAL MAGNETIC FIELDS ON THE DEFORMATION CHARACTERISTICS OF METALLIC MATERIALS
- Authors: Shlyarov V.1, Serebryakova A.1, Aksenova K.1, Zaguliaev D.1
-
Affiliations:
- Siberian State Industrial University
- Issue: No 4 (2025)
- Section: Статьи
- URL: https://journals.rcsi.science/2304-4497/article/view/380620
- ID: 380620
Cite item
Abstract
A analysis of the effect of constant and pulsed magnetic fields of varying intensity on the deformation characteristics of metallic materials, mainly para- and diamagnets, has been carried out. It was found that exposure of samples in magnetic fields with an induction of 0.1 – 0.5 T leads to a redistribution of alloying atoms, a weakening of the bond of dislocations with point and extended defects of the crystal lattice, which causes a decrease in the microhardness of materials by 15 ‒ 25 % compared with the initial state. In the region of weak fields (10 ‒ 50 MT), a pronounced nonlinear dependence of the yield strength and relative elongation on the magnitude of induction was found, which indicates the high sensitivity of the macroplastic properties of metals to small values of magnetic action. For the Al – Zn – Mg – Cu alloy, treatment at a field of 1 Tl and in the temperature range of 110 ‒ 140 °C reduces the critical shear stress by 10 ‒ 15 % and intensifies the nucleation process of the n' phase, which is associated with a decrease in interfacial energy and activation of structural and kinetic processes. In the Ti – 6Al – 4V titanium alloy, the action of the 2 Tl field contributes to an increase in dislocation density by up to 60 %, an increase in microhardness by 8 % and elongation by up to 13 %, which is explained by the participation of spin-dependent transitions in plastic deformation mechanisms. The action of pulsed magnetic fields stimulates subgranular fragmentation and significant grain crushing, leading to an increase in the ductility of alloys up to 25 %. The data obtained indicate the high potential of magnetic fields as a controlled tool for regulating the kinetics of phase transformations, defect dynamics, and reducing energy barriers to plastic flow, which opens up new opportunities for integrating magnetic processing into modern industrial technologies for shaping and strengthening structural materials of various nature.
About the authors
Vitaly V. Shlyarov
Siberian State Industrial University
Author for correspondence.
Email: shlyarov_vv@sibsiu.ru
ORCID iD: 0000-0001-8130-648X
SPIN-code: 5074-3309
Russian Federation
Anna A. Serebryakova
Siberian State Industrial University
Email: serebryakova_aa@sibsiu.ru
ORCID iD: 0000-0003-3979-7777
SPIN-code: 5889-2235
K.V. Aksenova
Siberian State Industrial University
Email: 19krestik91@mail.ru
ORCID iD: 0000-0003-4908-6776
SPIN-code: 2609-7004
Dmitry V. Zaguliaev
Siberian State Industrial University
Email: zagulyaev_dv@physics.sibsiu.ru
ORCID iD: 0000-0002-9859-8949
SPIN-code: 9522-4745
References
- Barman A., Mondal S., Sahoo S., De A. Magnetization Dynamics of Nanoscale Magnetic Materials: A Perspective. Mesoscale and Nanoscale Physics. 2020.
- https://doi.org/10.48550/arXiv.2008.05819
- Tapash Chakraborty. Spin-orbit interaction based spintronics. Encyclopedia of Condensed Matter Physics (Second Edition). 2024:193‒204. https://doi.org/10.1016/B978-0-323-90800-9.00093-7
- Alshits, V., Kotowski, R., Tronczyk, P. Mag-netoplastic Effect in Nonmagnetic Materials. Experimental Studies and Computer Simula-tions. The International Conference on Computational & Experimental Engineering and Sciences. 2008;6(4):207‒214.
- https://doi.org/10.3970/icces.2008.006.207
- Покоев А., Осинская Ю., Шахбанова С., Ямщикова К. Магнитопластический эффект в алюминиевых сплавах. Известия Российской академии наук. Серия физическая. 2018;82:961‒964.
- Pokoev A., Osinskaya J. Manifestation of Magnetoplastic Effect in Some Metallic Al-loys. Defect and Diffusion Forum. 2018;383:180‒184.
- Li G.-R., Wang H., Li P.-S., Gao L.-Z., Peng C.-X., Zheng, R. Mechanism of dislocation kinetics under magnetoplastic effect. Acta Physica Sinica. 2015;64(14):148102.
- Zhang X., Zhao Q., Wang Zh., Cai Zh., Pan J. A study on the room-temperature magnetoplastic effect of silicon and its mechanism. Journal of Physics: Condensed Matter. 2021; 33: 435702.
- Smirnov N. To the Explanation of the Magnetoplastic Effect in Diamagnetic and Paramagnetic Solids. Moscow University Physics Bulletin. 2019;74:453‒458.
- 9.Skvortsov A.A., Pshonkin D.E., Luk’yanov M.N., Rybakova M.R. Influence of permanent magnetic fields on creep and microhardness of iron-containing aluminum alloy. Journal of Materials Research and Technology. 2019;8(3):2481‒2485.
- Sánchez-Alarcos V., Recarte V., Pérez-Landazábal J.I., Gómez-Polo C., Rodríguez -Velamazán J.A. Role of magnetism on the martensitic transformation in Ni–Mn-based magnetic shape memory alloys. Acta Materi-alia. 2012;60(2):459‒468.
- Luo J., Luo H., Liu C., Zhao T., Wang R., Ma Y. Effect of magnetic field on precipitation kinetics of an ultrafine grained Al – Zn – Mg – Cu alloy. Materials Science and Engineering: A. 2020;798:139990.
- Li G.R., Wang F.F., Wang H.M., Cheng J.F. Microstructure and Mechanical Properties of TC4 Titanium Alloy Subjected to High Static Magnetic Field. Materials Science Forum. 2017;898:345‒354.
- Li G.R., Li Y.M., Wang F.F., Wang H.M. Microstructure and performance of solid TC4 titanium alloy subjected to the high pulsed magnetic field treatment. Journal of Alloys and Compounds. 2015; 644:750‒756.
- Li G.R., Qin T., Fei A.G., Wang H.M., Zhao Y.T., Chen G., Kai X.Z. Performance and microstructure of TC4 titanium alloy subjected to deep cryogenic treatment and magnetic field. Journal of Alloys and Compounds. 2019;802:50‒69.
- Guo P., Zhao Y., Zeng W., Hong Q. The effect of microstructure on the mechanical properties of TC4 ‒ DT titanium alloys. Materials Science and Engineering: A. 2013;563:106‒111. https://doi.org/10.1016/j.msea.2012.11.033
- Liu, Z. L., Hu, H. Y., Fan, T. Y. Dislocation mechanism of magnetoplasticity. Beijing Li-gong Daxue Xuebao/Transaction of Beijing Institute of Technology. 2007;27(2):113‒115.
- Сейдаметов С.В., Лоскутов С.В., Щетинина М.О. Магнитопластический эффект в условиях испытаний на кинетическое индентирова-ние. Металлофизика и новейшие технологии. 2015:37(5):615‒624.
- Сейдаметов С.В. Лоскутов С.В. Влияние импульсной электромагнитной обработки на структурные перестройки сплава титана ВТ3. Журнал физики и инженерии поверхности. 2016;1(1):4‒8.
- Zhang L., Li W., Yao J.P., Qiu H. Effects of pulsed magnetic field on microstructures and morphology of the primary phase in semisolid A356 Al slurry. Materials Letters. 2012;66(1):190‒92.
- Cheng J., Li G., Wang H., Li P., Li C. Influence of High Pulsed Magnetic Field on the Dislocations and Mechanical Properties of Al2O3/Al Composites. Journal of Materials Engineering and Performance. 2018;27:1083‒1092.
- Fu J.W., Yang Y.S. Microstructure and me-chanical properties of Mg – Al – Zn alloy under a low-voltage pulsed magneticfield. Institute of Metal Research, Chinese Academy of Sciences, China. Materials Letters. 2012;67:252–255.
- Zhang L., Zhou W., Hu P.H., Zhou Q. Microstructural characteristics and mechanical properties of Mg-Zn-Y alloy containing icosahedral quasicrystals phase treated by pulsed magnetic field. Journal of Alloys and Compounds.2016;688:868‒874.
- Li Y.J., Tao W.Z., Yang Y.S. Grain refinement of Al–Cu alloy in low voltage pulsed magnetic field. Journal of Materials Processing Technology. 2012;212:903‒909.
- Ainsworth R.A. Creep Cracking. Comprehensive Structural Integrity. 2007;10:75‒87. https://doi.org/10.1016/B978-008043749-1/00326-7
- Моргунов Р.Б., Валеев Р.А., Скворцов А.А., Ко-ролев Д.В., Пискорский В.П., Куницына Е.И., Кучеряев В.В., Коплак О.В. Магнитопла-стический и магнитомеханический эффекты в алюминиевых сплавах с магнитострикционными микровключениями. Труды ВИАМ. 2019;10:3‒13.
- Alshits V.I., Darinskaya E.V., Koldaeva M.V., Petrzhik E.A. Chapter 86 ‒ Magnetoplastic Effect in Nonmagnetic Crystals, Editor(s): J.P. Hirth, Dislocations in Solids, Elsevier. 2008;14:333‒437.
- Blum W. Creep of crystalline materials: experimental basis, mechanisms and models. Materials Science and Engineering A. 2001;319(2):8‒15.
- Galligan J.M. et al. Dislocation drag processes. Materials Science and Engineering A287. 2000. 287(2):259‒264
- Tang G. et al. Effect of a pulsed magnetic treatment on the dislocation substructure of a commercial high strength steel. Materials Science and Engineering A 398. 2005.398(1):108‒112
- Шляров В.В., Загуляев Д.В. Влияние маг-нитных полей на процесс пластической деформации цветных металлов. Фундаментальные проблемы современного материаловедения. 201;16(3):394‒398.
- Загуляев Д.В., Шляров В.В., Серебрякова А.А., Громов В.Е., Перегудов О.А. Влияние постоянных магнитных полей на деформационное поведение цветных металлов. Новокузнецк: Полиграфист, 2024:155.
- Serebryakova A.A., Zaguliaev D.V., Shlyarov V.V., Gromov V.E., Aksenova K.V. A Study of the Microhardness and Plasticity Parameter of Lead in External Magnetic Fields with an Induction of up to 0.5 T. Technical Physics. 2024. 2023;132(4):52–58.
- https://doi.org/10.1134/S1063784224700488
- Шляров В.В., Загуляев Д.В., Серебрякова А.А. Анализ изменения микротвердости, скорости ползучести и морфологии поверхности разрушения титана ВТ1-0, деформируемого в условиях действия постоянного магнитного поля 0,3 Тл. Frontier Materials and Technology. 2022;(1):91–100.
- https://doi.org/10.18323/2782-4039-2022-1-91-100
- Шляров В.В., Серебрякова А.А., Аксенова К.В., Загуляев Д.В. Влияние постоянного маг-нитного поля на усталостную долговеч-ность диамагнетиков: роль эффекта Зеемана в усталостной прочности цветных металлов. Известия вузов. Поволжский регион. Физико-математические науки. 2025;(3):66‒80.
- Safran S.A. Statistical Thermodynamics of Surfaces. Interfaces and Membranes, 1995;78(3-4):1175‒1177.
- Misra P.K. Chapter 12 ‒ Diamagnetism and Paramagnetism. Physics of Condensed Matter. 2012:369‒407. https://doi.org/10.1016/B978-0-12-384954-0.00012-8
- Ramazashvili R.Zeeman spin-orbit coupling in antiferromagnetic conductors. Journal of Physics and Chemistry of Solids. 2019;128:65‒74. https://doi.org/10.1016/j.jpcs.2018.09.033
- Winkler R. Spin-orbit coupling in solids. Encyclopedia of Condensed Matter Physics (Second Edition). 2024;2:186‒192.
- https://doi.org/10.1016/B978-0-323-90800-9.00251-1
- Morgunov R.B. Spin-dependent reactions, magnetic resonance, and magnetic isotope effect in crystal plasticity. Russ Chem Bull. 2025;74:2599‒2607. https://doi.org/10.1007/s11172-025-4743-y
- Pokoev A.V. Manifestation of magnetoplastic effect in some metallic alloys. Defect and Diffusion Forum. 2018;383:180‒186.
- https://doi.org/10.4028/www.scientific.net/DDF.383.180
- Luo J. et al. Effect of magnetic field on dislocation morphology and precipitation in ultrafine-grained 7075 Al alloy. Journal of Alloys and Compounds. 2021;872:159741.
- https://doi.org/10.1016/j.jmst.2021.03.016
- Bagryansky V.A. Interaction of spin-correlated radical pair with a third radical. Journal of Physical Chemistry. 2019;123(45):28123‒28130. https://doi.org/10.1063/1.5127812
- Gerhards L. Modeling spin relaxation in complex radical systems. Journal of Computational Chemistry. 2023;44(7):1234‒1246.
- https://doi.org/10.1002/jcc.27120
- Alshits V., Kotowski R., Tronczyk P. Magnetoplastic Effect in Nonmagnetic Materials: Experimental Studies and Computer Simulations. The International Conference on Computational & Experimental Engineering and Sciences. 2008;6(4):207‒214.
- https://doi.org/10.3970/icces.2008.006.207
- Rather S.R., Weingartz N.P., Kromer S. et al. Spin-vibronic coherence drives singlet-triplet conversion. 2023;620:776–781.
- https://doi.org/10.1038/s41586-023-06233-y
- Alshits V.I. Effects of magnetic fields on the dislocation unlocking from paramagnetic centers. Physica Status Solidi B. 1993;175(1):11‒20. https://doi.org/10.1016/0921-5093(93)90686-9
- Malashenko B. Effect of a magnetic field on the dynamics of dislocations in normal metals with a high impurity concentration at low temperatures. Low Temperature Physics. 2008;34. https://doi.org/10.1063/1.2973718
- Gudala S., Shlyarov V., Aksenova K., Zagu-liaev D., Serebryakova A. Evolution of Dislocation Substructures of Fatigue Fracture of Titanium Under Constant Magnetic Field. Metallography, Microstructure, and Analysis. 2025;14:279‒286. https://doi.org/10.1007/s13632-025-01183-5
- Shlyarov V.V., Aksenova K.V., Zaguliaev D.V., Serebryakova A.A. Evolution of the Fracture Surface of Commercially Pure VT1-0 Titanium Subjected to Multicycle Fatigue in a Constant Magnetic Field. J. Surf. Investig. 2023;17:144–149. https://doi.org/10.1134/S1027451023010238
- Меньшенин В.В., Радзивончик Д.И. Магнитоэлектрический эффект и магнитная динамика в антиферромагнетике Gd2CuO4. Физика твердого тела. 2013;55(8):1544‒1551.
- Rahman R.U., Li Z., He J. Magnetic wave dynamics in ferromagnetic thin films: Interactions of solitons and positons in Landau-Lifshitz-Gilbert equation. Physica D: Nonlinear Phenomena. 2025;479:134719.
- https://doi.org/10.1016/j.physd.2025.134719
- Gladkov S., Bogdanova S. On computation of relaxation constant α in Landau–Lifshitz–Gilbert equation. Journal of Magnetism and Magnetic Materials. 2014;368:324‒327. https://doi.org/10.1016/j.jmmm.2014.05.028
- Liu, A., Wen, T., Han, J. et al. Finite-temperature screw dislocation core structures and dynamics in α-titanium. Comput Mater. 2023;9:228. https://doi.org/10.1038/s41524-023-01181-7
- Wei B., Peng L., Liu Y., Zhang J., Wen S., Li S., Huang S. A magnetic field reinforced excitation structure for enhanced motion-induced eddy current defect detection. Measurement. 2026;258:119186 https://doi.org/10.1016/j.measurement.2025.119186
- Song X., Qi H., Li S., Hu Y., Yang W., Li Z. Effect of cryogenic coupled magnetic field treatment on the microstructure and mechanical properties on Ti ‒ 6Al ‒ 4V titanium alloy. Materials Today Communications. 2024;40:109417 https://doi.org/10.1016/j.mtcomm.2024.109417
- Hu J., Wang Y., Yang C., Zhang S., Chen X. Mechanical behavior, microstructural defor-mation mechanisms, and reliability evaluation of titanium alloy helical springs in extreme space environments with magnetic fields. Journal of Materials Research and Technology. 2025;35:6060‒6074.
- https://doi.org/10.1016/j.jmrt.2025.02.208
- Shatruk M., Clark J.K. Magnetic materials. Comprehensive Inorganic Chemistry III (Third Edition). 2023:236‒261.
- https://doi.org/10.1016/B978-0-12-823144-9.00169-2
Supplementary files
