Перспективы использования меланина в качестве антибактериального агента потребительской упаковки

Обложка

Цитировать

Полный текст

Аннотация

Меланины, обладая высокой физиологической активностью и функциональными свойствами, в числе прочего представляют интерес как антибактериальные агенты в составе пищевых систем и потребительской упаковки продуктов. Проведенная работа была посвящена изучению противомикробной активности меланина из лузги гречихи в отношении ряда микроорганизмов бактериальной микрофлоры сыров промышленного производства. Объектами исследования являлись очищенный меланин, полученный из лузги гречихи, и тест-культуры Penicillium roqueforti, Bacillus subtilis, Bacillus pumilus и Lactobacillus plantarum. В ходе работы использовали диско-диффузионный метод и культивирование тест-культур в присутствии меланина. Статистическую обработку результатов исследований проводили с применением пакета Statistica 10. В ходе проведенного анализа установлена антимикробная активность меланина в отношении грамположительных бактерий Bacillus subtilis B-12587 и Penicillium roqueforti F-1311, в максимальной исследуемой концентрации зона лизиса при культивировании клеток Bacillus subtilis B-12587 составляет 26,4±0,2 мм, что в 1,28 раза больше зоны лизиса клеток Penicillium roqueforti F-1311, в 1,43 раза больше зоны лизиса клеток Bacillus pumilus B-7308 и в 1,58 раза больше зоны лизиса клеток Lactobacillus plantarum B-3242. В эксперименте показано, что существует высокая корреляционная связь (r = 0,97) между концентрацией меланина в среде и подавлением роста клеток Bacillus subtilis B-1258. Полученные в работе данные свидетельствуют о перспективности исследований по использованию растительных меланинов в качестве противомикробных агентов в составе пищевых пленок для первичной упаковки продуктов питания.

Об авторах

Я. В. Уразова

Бийский технологический институт (филиал) Алтайского государственного технического университета им. И.И. Ползунова

Email: urazova.iav@bti.secna.ru
ORCID iD: 0000-0002-6847-8487

Е. Д. Рожнов

Уральский государственный экономический университет

Email: red@bti.secna.ru
ORCID iD: 0000-0002-3982-9700

М. Н. Школьникова

Уральский государственный экономический университет

Email: shkolnikova.m.n@mail.ru
ORCID iD: 0000-0002-9146-6951

Список литературы

  1. Кадрицкая Е.А., Школьникова М.Н. Применение меланина в пищевой промышленности // Аграрно-пищевые инновации. 2022. № 3. С. 69–76. doi: 10.31208/2618-7353-2022-19-69-76. EDN: TKHXRP.
  2. Mostert A.B. Melanin, the what, the why and the how: An introductory review for materials scientists interested in flexible and versatile polymers // Polymers. 2021. Vol. 13, no. 10. P. 1670. doi: 10.3390/polym13101670.
  3. Lomovskiy I., Kiryanov A., Skripkina T. The effect of reverse sorption on an extraction kinetics melanin case // Processes. 2023. Vol. 11, no. 11. P. 3192. doi: 10.3390/pr11113192.
  4. Minasyan E., Aghajanyan A., Karapetyan K., Khachaturyan N., Hovhannisyan G., Yeghyan K., et al. Antimicrobial activity of melanin isolated from wine waste // Indian Journal of Microbiology. 2024. Vol. 64. P. 1528–1534. doi: 10.1007/s12088-023-01155-9.
  5. Tsouko E., Tolia E., Sarris D. Microbial melanin: renewable feedstock and emerging applications in food-related systems // Sustainability. 2023. Vol. 15, no. 9. P. 7516. doi: 10.3390/su15097516.
  6. Yang M., Li L., Yu S., Liu J., Shi J. High performance of alginate/polyvinyl alcohol composite film based on natural original melanin nanoparticles used as food thermal insulating and UV-vis block // Carbohydrate Polymer. 2020. Vol. 233. P. 115884. doi: 10.1016/j.carbpol.2020.115884.
  7. Bang Y.-J., Shankar S., Rhim J.-W. Preparation of polypropylene/poly (butylene adipate-co-terephthalate) composite films incorporated with melanin for prevention of greening of potatoes // Packaging Technology and Science. 2020. Vol. 33, no. 10. P. 433–441. https://doi.org/10.1002/pts.2525.
  8. Łopusiewicz L., Drozlowska E., Trocer P., Kostek M., Śliwiński M., Henriques M.H.F., et al. Whey protein concentrate/isolate biofunctional films modified with melanin from watermelon (Citrullus lanatus) seeds // Materials. 2020. Vol. 13, no. 17. P. 3876. doi: 10.3390/ma13173876.
  9. Liang Y., Zhao Y., Sun H., Dan J., Kang Y., Zhang Q., et al. Natural melanin nanoparticle-based photothermal film for edible antibacterial food packaging // Food Chemistry. 2023. Vol. 401. P. 134117. doi: 10.1016/j.foodchem.2022.134117.
  10. Łopusiewicz Ł., Jędra F., Mizielińska M. New poly(-lactic acid) active packaging composite films incorporated with fungal melanin // Polymers. 2018. Vol. 10, no. 4. P. 386. doi: 10.3390/polym10040386.
  11. Roy S., Rhim J.-W. Preparation of carrageen-an-based functional nanocomposite films incorporated with melanin nanoparticles // Colloids and Surfaces B: Biointerfaces. 2019. Vol. 176. P. 317–324. doi: 10.1016/j.colsurfb.2019.01.023.
  12. Roy S., Shankar S., Rhim J.-W. Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films // Food Hydrocolloids. 2019. Vol. 88. P. 237–246. doi: 10.1016/j.foodhyd.2018.10.013.
  13. Kiran G.S., Dhasayan A., Lipton A.N., Selvin J., Arasu M.V., Al-Dhabi N.A. Melanin-templated rapid synthesis of silver nanostructures // Journal of Nanobiotechnology. 2014. Vol. 12, no. 1. P. 18. doi: 10.1186/1477-3155-12-18.
  14. Galaby S.S., Maharik N.M.S., Khalifa M.I. Prevalence of some deteriorating microorganisms in raw milk and some locally made cheese // New Valley Veterinary Journal. 2021. Vol. 1, no. 2. P. 21–27. doi: 10.21608/nvvj.2021.205838.
  15. Ibrahim R.A., El-Salam B.A.A., Alsulami T., Ali H.S., Hoppe K., Badr A.N. Neoteric biofilms applied to enhance the safety characteristics of Ras cheese during ripening // Foods. 2023. Vol. 12, no. 19. P. 3548. doi: 10.3390/foods12193548.
  16. Ferraz A.R., Goulão M., Santo C.E., Anjos O., Serralheiro M.L., Pintado C.M.B.S. Novel, edible melanin-protein-based bioactive films for cheeses: antimicrobial, mechanical and chemical characteristics // Foods. 2023. Vol. 12, no. 9. P. 1806. doi: 10.3390/foods12091806.
  17. Школьникова М.Н., Аверьянова Е.В., Рожнов Е.Д., Баташов Е.С. Исследование антибактериальной активности флавоноидов облепихового шрота // Индустрия питания. 2020. Т. 5. N 3. С. 61–69. doi: 10.29141/2500-1922-2020-5-3-7. EDN: AWZINX.
  18. Пат. № 2780731, Российская Федерация, МПК C09B 61/00. Способ выделения меланина из лузги гречихи / Я.В. Уразова, Е.Д. Рожнов, Л.А. Бахолдина, Е.А. Кадрицкая, М.Б. Ребезов, М.А. Шариати. Заявл. 02.06.2021; опубл. 29.09.2022. Бюл. № 28.
  19. Zhang Z., Yang Y., Xi H., Yu Y., Song Y., Wu C., et al. Evaluation methods of inhibition to microorganisms in biotreatment processes: a review // Water Cycle. 2023. Vol. 4. P. 70–78. doi: 10.1016/j.watcyc.2023.02.004.
  20. Nielsen S.L., Hansen B.W. Evaluation of the robustness of optical density as a tool for estimation of biomass in microalgal cultivation: The effects of growth conditions and physiological state // Aquaculture Research. 2019. Vol. 50, no 9. P. 2698–2706. doi: 10.1111/are.14227.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).