Влияние метода су-вид и ферментативной реструктуризации мышечной ткани макруруса малоглазого на формирование качества готовой продукции

Обложка

Цитировать

Полный текст

Аннотация

Цель проведенного исследования заключалась в обосновании технологии переработки глубоководного объекта промысла Тихоокеанского бассейна – макруруса малоглазого – на основе метода су-вид и ферментативной реструктуризации мышечной ткани. Были определены физико-химические свойства мышечной ткани на различных стадиях обработки, изменения фракционного состава белков, проведено сравнение предлагаемой технологии и традиционных способов термообработки; определены рациональные параметры процесса, изучена стабильность готовой продукции при хранении и показатели ее безопасности. Показатели качества при обработке различными способами (варка в воде, обработка паром и су-вид) отразили снижение плотности, разрушение структуры мышечной ткани и утрату потребительской привлекательности готового продукта во всех случаях. При обработке методом су-вид технологические потери были существенно меньшими, что соответствовало меньшей степени денатурации белка. Для достижения необходимых показателей качества была проведена предварительная реструктуризация мышечной ткани макруруса с использованием трансглутаминазы для формирования сшивок между молекулами белка. Дополнительными субстратами, усиливающими полимеризацию эндогенных белков, служили желатин и лактат хитозана. Продукты сохраняли целостность структуры при повышении ее прочности. Рассмотрено влияние трансглутаминазы на связывание саркоплазматических и миофибриллярных белков с образованием высокомолекулярных конъюгатов. При морозильном хранении образцов в течение 6 месяцев существенных изменений физико-химических показателей, включая степень денатурации белка и прочность готового продукта, не отмечено. За период хранения для всех образцов микробная контаминация не превышала 102 КОЕ/г. Добавление лактата хитозана значительно снизило рост психрофильных микроорганизмов.

Об авторах

Т. Н. Пивненко

Дальневосточный государственный технический рыбохозяйственный университет

Email: tnpivnenko@mail.ru

Ю. М. Позднякова

Дальневосточный государственный технический рыбохозяйственный университет

Email: pozdnyakova.julia@yandex.ru

Е. М. Панчишина

Дальневосточный государственный технический рыбохозяйственный университет

Email: ekaterina.pan.8@mail.ru

Р. В. Есипенко

Дальневосточный государственный технический рыбохозяйственный университет

Email: azt@bk.ru

Список литературы

  1. Abel N., Rotabakk B.T., Lerfall J. Mild processing of seafood – а review // Comprehensive Reviews in Food Science and Food Safety. 2022. Vol. 21, no. 1. P. 340–370. doi: 10.1111/1541-4337.12876.
  2. Jermann C., Koutchma T., Margas E., Leadley C., Ros-Polski V. Mapping trends in novel and emerging food processing technologies around the world // Innovative Food Science & Emerging Technologies. 2015. Vol. 31. P. 14–27. doi: 10.1016/j.ifset.2015.06.007.
  3. Rodgers S. Minimally processed functional foods: technological and operational pathways // Journal of Food Science. 2016. Vol. 81, no. 10. P. R2309–R2319. doi: 10.1111/1750-3841.13422.
  4. Baldwin D.E. Sous vide cooking: a review // International Journal of Gastronomy and Food Science. 2012. Vol. 1, no. 1. P. 15–30. doi: 10.1016/j.ijgfs.2011.11.002.
  5. Фофанова Т.С. Технология су-вид – некоторые аспекты качества и микробиологической безопасности // Теория и практика переработки мяса. 2018. Т. 3. N 1. С. 59–68. doi: 10.21323/2414-438X-2018-3-1-59-68. EDN: YUDWZJ.
  6. Cui Z., Yan H., Manoli T., Mo H., Bi J., Zhang H. Advantage and challenge of sous vide cooking // Food Science and Technology Research. 2021. Vol. 27, no. 1. P. 25–34. doi: 10.3136/fstr.27.25.
  7. Erdem N., Karakaya M., Babaoğlu A.S., Unal K. Effects of sous vide cooking on physicochemical, structural and microbiological characteristics of cuttlefish, octopus and squid // Journal of Aquatic Food Product Technology. 2022. Vol. 31, no. 7. Р. 636–648. doi: 10.1080/10498850.2022.2092433.
  8. Cropotova J., Mozuraityte R., Standal I.B., Rustad T. The influence of cooking parameters and chilled storage time on quality of sous-vide Atlantic mackerel (Scomber scombrus) // Journal of Aquatic Food Product Technology. 2019. Vol. 28, no. 5. Р. 505-518. doi: 10.1080/10498850.2019.1604595.
  9. Pivnenko T.N., Karpenko Yu.V., Krashchenko V.V., Pozdnyakova Yu.M., Esipenko R.V. Biochemical factors affecting the quality of products and the technology of processing deep-sea fish, the Giant Grenadier Albatrossia pectoralis // Journal of Ocean University of China. 2020. Vol. 19. P. 681–690. doi: 10.1007/s11802-020-4273-z.
  10. Пивненко Т.Н., Карпенко Ю.В., Позднякова Ю.М., Кращенко В.В., Есипенко Р.В. Обоснование условий применения трансглутаминазы в технологии формованной продукции из обводненного рыбного сырья // Известия вузов. Прикладная химия и биотехнология. 2021. Т. 11. N 2. С. 205–215. doi: 10.21285/2227-2925-2021-11-2-205-215. EDN: WJWUSG.
  11. Карпенко Ю.В., Панчишина Е.М., Скальская В.А. Оценка показателей качества и безопасности рыбной кулинарной продукции, полученной по технологии sous vide (су-вид) // Научные труды Дальрыбвтуза. 2019. Т. 48. N 2. С. 52–61. EDN: YLDBGW.
  12. Пивненко Т.Н. Применение трансглутаминазы в пищевой промышленности // Научные труды Дальрыбвтуза. 2021. Т. 55. N 1. С. 5–22. EDN: ERKAKN.
  13. Rachel N.M., Pelletier J.N. Biotechnological applications of transglutaminases // Biomolecules. 2013. Vol. 3, no. 4. P. 870–888. doi: 10.3390/biom3040870.
  14. Kieliszek M., Misiewicz A. Microbial transglutaminase and its application in the food industry. A review // Folia Microbiologica. 2014. Vol. 59. P. 241–250. doi: 10.1007/s12223-013-0287-x.
  15. Benjakul S., Visessanguan W., Tanaka M., Ishizaki S., Suthidham R., Sungpech O. Effect of chitin and chitosan on gelling properties of surimi from barred garfish (Hemiramphus far) // Journal of the Science Food and Agriculture. 2001. Vol. 81, no. 1. P. 102–108. doi: 10.1002/1097-0010(20010101)81:13.0.CO;2-O.
  16. Gómez-Guillén M.C., Montero P., Solas M.T., Pérez-Mateos M. Effect of chitosan and microbial transglutaminase on the gel forming ability of horse mackerel (Trachurus spp.) muscle under high pressure // Food Research International. 2005. Vol. 38, no. 1. P. 103–110. doi: 10.1016/j.foodres.2004.09.004.
  17. Huang M., Xu Y., Xu L., Bai Y., Xu X. Interactions of water-soluble myofibrillar protein with chitosan: phase behavior, microstructure and rheological properties // Innovative Food Science & Emerging Technologies. 2022. Vol. 78. P. 103013. doi: 10.1016/j.ifset.2022.103013.
  18. Mol S., Erkan N., Üçok D.,Ş., Tosun Y. Effect of psychrophilic bacteria to estimate fish quality // Journal of Muscle Food. 2007. Vol. 18, no. 1. P. 120–128. doi: 10.1111/j.1745-4573.2007.00071.x.
  19. Максимова С.Н., Сафронова Т.М., Суровцева Е.В. Использование хитозана в технологии пищевых продуктов из водных биоресурсов // Известия высших учебных заведений. Пищевая технология. 2017. N 2-3. С. 35–40. EDN: ZAUJYL.
  20. Kabanov V.L., Novinyuk L.V. Chitosan application in food technology: a review of rescent advances // Пищевые системы. 2020. Т. 3. N 1. С. 10–15. doi: 10.21323/2618-9771-2020-3-1-10-15. EDN: VYTAIH.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).