Microorganisms inhabiting the endo- and rhizosphere of Hedysarum zundukii (Fabaceae) endemic to the Baikal region

Cover Page

Cite item

Full Text

Abstract

Bacteria provide plants with additional resistance to adverse environmental factors, such as the lack of soil nutrients, anthropogenic pollution, the presence of phytopathogens, etc. The search for valuable biotechnological strains should be conducted among microorganisms associated with plants growing under unfavorable conditions. The present study aims to isolate and characterize microorganisms inhabiting the endo- and rhizosphere of Hedysarum zundukii, a local endemic of the Olkhon region (Olkhonsky District, Irkutsk Oblast). A total of 88 microbial strains were isolated, with Gram-positive microorganisms predominating in both the rhizo- and endosphere. In the rhizosphere, the vast majority of strains were found to belong to actinomycetes. Of the 25 identified isolates, four belong to the Rhizobiaceae family. The Phyllobacterium zundukense rhizobacterium was previously described as part of the microbiome of root nodules in Oxytropis triphylla also growing in this region. Its detection in the rhizosphere soil of H. zundukii suggests that this microorganism is associated with different legume species rather than with a single host. Of particular interest are the strains of Actinomycetia, as well as Lysobacter sp. and Variovorax paradoxus, which are promising for further study as producers of biologically active compounds, stimulators of plant growth and development, or pollutant degraders. Thus, isolates from both the rhizosphere and endosphere of H. Zundukii may possess traits useful for biotechnology and require further study.

About the authors

I. A. Vasilev

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: ilvasil85@gmail.com

D. A. Krivenko

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: krivenko.irk@gmail.com

I. S. Petrushin

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: ivan.kiel@gmail.com

I. G. Kondratov

Scientific Centre for Family Health and Human Reproduction Problems

Email: kondratovig@mail.ru

O. B. Ogarkov

Scientific Centre for Family Health and Human Reproduction Problems

Email: obogarkov@mail.ru

Yu. A. Markova

Siberian Institute of Plant Physiology and Biochemistry SB RAS

Email: juliam06@mail.ru

References

  1. Gamalero E., Bona E., Glick B.R. Current techniques to study beneficial plant-microbe interactions // Microorganisms. 2022. Vol. 10, no. 7. P. 1380. doi: 10.3390/microorganisms10071380.
  2. Zolla G., Badri D.V., Bakker M.G., Manter D.K., Vivanco J.M. Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis // Applied Soil Ecology. 2013. Vol. 68. P. 1–9. doi: 10.1016/j.apsoil.2013.03.007.
  3. Kour D., Rana K.L., Kaur T., Sheikh I., Yadav A.N., Kumar V., et al. Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes // Biocatalysis and Agricultural Biotechnology. 2020. Vol. 23. P. 101501. doi: 10.1016/j.bcab.2020.101501.
  4. Rane N.R., Tapase S., Kanojia A., Watharkar A., Salama E.-S., Jang M., et al. Molecular insights into plant– microbe interactions for sustainable remediation of contaminated environment // Bioresource Technology. 2022. Vol. 344. P. 126246. doi: 10.1016/j.biortech.2021.126246.
  5. Costa O.Y.A., Raaijmakers J.M., Kuramae E.E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation // Frontiers in Microbiology. 2018. Vol. 9. P. 1636. doi: 10.3389/fmicb.2018.01636.
  6. Gorgi O.E., Fallah H., Niknejad Y., Tari D.B. Effect of plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi inoculations on essential oil in Melissa officinalis L. under drought stress // Biologia. 2022. Vol. 77. P. 11–20. doi: 10.1007/s11756-021-00919-2.
  7. Xu L., Pierroz G., Wipf H.M.-L., Gao C., Taylor J.W., Lemaux P.G., et al. Holo-omics for deciphering plant-microbiome interactions // Microbiome. 2021. Vol. 9. P. 69. doi: 10.1186/s40168-021-01014-z.
  8. Petrushin I.S., Vasilev I.A., Markova Yu.A. Drought tolerance of legumes: physiology and the role of the microbiome // Current Issues in Molecular Biology. 2023. Vol. 45, no. 8. P. 6311–6324. doi: 10.3390/cimb45080398.
  9. Ali S., Tyagi A., Park S., Mir R.A., Mushtaq M., Bhat B., et al. Deciphering the plant microbiome to improve drought tolerance: mechanisms and perspectives // Environmental and Experimental Botany. 2022. Vol. 201. P. 104933. doi: 10.1016/j.envexpbot.2022.104933.
  10. Rolli E., Vergani L., Ghitti E., Patania G., Mapelli F., Borin S. ‘Cry-for-help’ in contaminated soil: a dialogue among plants and soil microbiome to survive in hostile conditions // Environmental Microbiology. 2021. Vol. 23, no. 10. P. 5690–5703. doi: 10.1111/1462-2920.15647.
  11. Белозерцева И.А., Лопатина Д.Н., Зверева Н.А. Почвы восточного Приольхонья на побережье озера Байкал: современное состояние и использование // Бюллетень Почвенного института имени В.В. Докучаева. 2019. N 97. С. 21–51. doi: 10.19047/0136-1694-201997-21-51. EDN: UAIHJB.
  12. Пешкова Г.А. Флорогенетический анализ степной флоры гор Южной Сибири. Новосибирск: Наука, 2001. 192 с.
  13. Карнаухова Н.А., Селютина И.Ю., Казановский С.Г., Черкасова Е.С. Онтогенез и структура ценопопуляций Hedysarum zundukii (Fabaceae) – эндемика западного побережья озера Байкал // Ботанический журнал. 2008. Т. 93. N 5. С. 744–755. EDN: JTCQJT.
  14. Красная книга Российской Федерации (растения и грибы) / ред. Ю.П. Трутнев, P.P. Гизатулин, О.Л. Митволь, А.М. Амирханов, Р.В. Камелин, В.А. Орлов. М.: Товарищество научных изданий КМК, 2008. 885 с. EDN: TCNFXR.
  15. Красная книга Иркутской области / ред. С.М. Трофимова; отв. ред. В.В. Попов; сост. М.Г. Азовский, С.С. Алексеев, В.А. Барицкая, А.Д. Ботвинкин, Н.А. Букшук, А.В. Верхозина. Улан-Удэ: Республиканская типография, 2020. 552 с. EDN: LWLAJL.
  16. Safronova V.I., Sazanova A.L., Kuznetsova I.G., Belimov A.A., Andronov E.E., Chirak E.R., et al. Phyllobacterium zundukense sp. nov., a novel species of rhizobia isolated from root nodules of the legume species Oxytropis triphylla (Pall.) Pers. // International Journal of Systematic and Evolutionary Microbiology. 2018. Vol. 68, no. 5. P. 1644–1651. doi: 10.1099/ijsem.0.002722.
  17. Panthee S., Hamamoto H., Paudel A., Sekimizu K. Lysobacter species: a potential source of novel antibiotics // Archives of Microbiology. 2016. Vol. 198. P. 839–845. doi: 10.1007/s00203-016-1278-5.
  18. Han J.-I., Spain J.C., Leadbetter J.R., Ovchinnikova G., Goodwin L.A., Han C.S., et al. Genome of the root-associated plant growth-promoting bacterium Variovorax paradoxus strain EPS // Genome Announcements. 2013. Vol. 1, no. 5. P. e00843-13. doi: 10.1128/genomea.00843-13.
  19. Naylor D., DeGraaf S., Purdom E., Coleman-Derr D. Drought and host selection influence bacterial community dynamics in the grass root microbiome // The ISME Journal. 2017. Vol. 11. P. 2691–2704. doi: 10.1038/ismej.2017.118.
  20. Чайковская Л.А., Овсиенко О.Л. Фосфатмобилизующие микроорганизмы: 1. Биоразнообразие, влияние на минеральное питание растений и их продуктивность // Таврический вестник аграрной науки. 2021. N 4. С. 159–182. doi: 10.33952/2542-0720-2021-4-28-159-182.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).