GREEN SYNTHESIS OF SILVER NANOPARTICLES. COMPLEMENTARY TECHNIQUES FOR CHARACTERIZATION

Cover Page

Cite item

Full Text

Abstract

The work presents the results of green synthesis (biosynthesis) of silver nanoparticles using aqueous extracts of maple and oak leaves. The efficiency of the synthesis, size and shape of the formed nanoparticles were studied using UV-visible spectroscopy, dynamic light scattering, atomic force microscopy and scanning electron microscopy techniques. It was found that the formation of silver nanoparticles is accompanied by the appearance of a plasmon resonance band in the electronic spectra of aqueous extracts, the maximum of which depends on the concentration of silver nitrate and is in the range of ~420-429 nm in the spectra of maple leaves, and in the spectra of oak extracts there is a shift towards longer wavelengths ~425-435 nm, which correspond to the formation of nanoparticles of larger size. According to the dynamic light scattering data, the size of nanoparticles in the maple extracts is of about 60-68 nm and in the oak samples of ~107 nm. The differences in the size and shape of nanoparticles obtained in the maple and oak phytoextracts detected by atomic force microscopy and scanning electron microscopy are explained by the different composition of bioactive substances in the plants involved in the reduction of silver ions and stabilization or modification of the surface of silver nanoparticles.

About the authors

Svetlana D. Khizhnyak

Tver State University

Tver, Russia

Alexandra I. Ivanova

Tver State University

Email: ivanova.ai@tversu.RUS
Tver, Russia

Valeria M. Volkova

Tver State University

Tver, Russia

Ekaterina V. Barabanova

Tver State University

Tver, Russia

Pavel M. Pakhomov

Tver State University

Tver, Russia

References

  1. Гусев, А.И. Наноматериалы, наноструктуры, нанотехнологии / А.И. Гусев. - М.: Физматлит, 2009.- 416 c.
  2. Roco, M.C. Nanotechnology: convergence with modern biology and medicine / M.C. Roco // Current Opinion in Biotechnology. - 2003. - V. 14. - I. 3. - P. 337-346. doi: 10.1016/S0958-1669(03)00068-5.
  3. Okitsu, K. Sonochemical synthesis of gold nanoparticles on chitosan / K. Okitsu, Y. Mizukoshi, T.A. Yamamoto et al. // Materials Letters. - 2007. - V. 61. - I. 16. - P. 3429-3431. doi: 10.1016/j.matlet.2006.11.090.
  4. Lee, S.H. Silver nanoparticles: synthesis and application for nanomedicine / S.H. Lee, B.H. Jun // International Journal of Molecular Sciences. - 2019. - V. 20. - I. 4. - Art. № 865. - 24 p. doi: 10.3390/ijms20040865.
  5. Wang, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future / L. Wang, C. Hu, L. Shao // International journal of nanomedicine. - 2017. - V. 12. - P. 1227-1249. doi: 10.2147/IJN.S121956.
  6. Оленин, А.Ю. Получение, динамика структуры объема и поверхности металлических наночастиц в конденсированных средах / А. Ю. Оленин, Г. В. Лисичкин // Успехи химии. - 2011. - Т. 80. - Вып. 7.- С. 635-662. doi: 10.1070/RC2011v080n07ABEH004201.
  7. Макаров, В.В. "Зеленые" нанотехнологии: синтез металлических наночастиц с использованием растений / В.В. Макаров, А. Лав, О.В. Синицина и др. // Acta Naturae. - 2014. - Т. 6. - № 1. - С. 37-47. doi: 10.32607/20758251-2014-6-1-35-44.
  8. Iravani, S. Green synthesis of metal nanoparticles using plants / S. Iravani // Green Chemistry. - 2011.- V. 13. - I. 10. - P. 2638-2650. doi: 10.1039/c1gc15386b.
  9. Kamran, U. Green synthesis of metal nanoparticles and their applications in different fields: a review / U. Kamran, H.N. Bhatti, M. Iqbal, A. Nazir // Zeitschrift für Physikalische Chemie. - 2019. - V. 233. - I. 9.- P. 1325-1349. doi: 10.1515/zpch-2018-1238.
  10. Sharma, N.K. Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness / N.K. Sharma, J. Vishwakarma, S. Rai et al // ACS Omega. - 2022. - V.7. - I. 31.- P. 27004-27020. doi: 10.1021/acsomega.2c01400.
  11. Ahmed, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise / S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram // Journal of Advanced Research.- 2016. - V. 7. - I. 1. - P. 17-28. doi: 10.1016/j.jare.2015.02.007.
  12. Srikar, S.K. Green synthesis of silver nanoparticles: a review / S.K.Srikar, D.D. Giri, D.B. Pal et al. // Green and Sustainable Chemistry. - 2016. - V. 6. - I. 1. - P. 34-56. doi: 10.4236/gsc.2016.61004.
  13. Kováčová, M. Sustainable one-step solid-state synthesis of antibacterially active silver nanoparticles using mechanochemistry / M. Kováčová, N. Daneu, Ľ.Tkáčiková et al // Nanomaterials. - 2020. - V. 10. - I. 11.- Art. № 2119. - 17 p. doi: 10.3390/nano10112119.
  14. Ahsan, T. Lichen-based nano-particles, an emerging antibacterial approach / T. Ahsan, L. He, Y. Miao, B. Li, Y. Wu // Journal of Materials Science and Chemical Engineering. - 2021. - V. 9. - I. 8. - P. 10-20. doi: 10.4236/msce.2021.98002.
  15. Maier, S.A. Plasmonics: fundamentals and applications / S.A. Maier. - New York: Springer, 2007. - xxvi, 224 p. doi: 10.1007/0-387-37825-1.
  16. Kerker, M.J. The optics of colloidal silver: something old and something new / M.J. Kerker // Journal of Colloid and interface Science. - 1985. - V. 105. -I. 2. - P. 297-314. doi: 10.1016/0021-9797(85)90304-2.
  17. Kelly, K.L. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment / K.L. Kelly, E. Coronado, L.L.Zhao, G.C. Schatz // The Journal of Physical Chemistry B. - 2003. - V. 107. - I. 3. - P. 668-677. doi: 10.1021/jp026731y.
  18. Расмагин, С.И. Анализ оптических свойств наночастиц серебра / C.И. Расмагин, Л.А. Апресян // Оптика и спектроскопия. - 2020. - Т. 128. - №. 3. - С. 339-342. doi: 10.21883/OS.2020.03.49061.315-19.
  19. Yashtulov, N.A. Synthesis and electrocatalytic activity of platinum/porous silicon nanoparticles / N.A. Yashtulov, V.O. Zenchenko, N.V. Kuleshov, V.R. Flid // Russian Chemistry Bulletin. - 2016. - V. 65.- I. 1. - P. 2369-2374. doi: 10.1007/s11172-016-1275-5.
  20. Шмелев, А.Г. Синтез и апробация наночастиц YVO4:YB,ER на виноградных улитках для задач биовизуализации / А.Г. Шмелев, В.Г. Никифоров, Д.К. Жарков и др. // Известия РАН. Серия Физическая. - 2020. - Т. 84. - № 12. - С. 1696-1701. doi: 10.31857/S0367676520120352.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).