EVALUATION OF THE PROPERTIES OF THE FUCOIDAN/Fe3O4 NANOCOMPOSITE AS A TRANSPORT AGENT OF COVALENTLY BOUND MOLECULAR CARGO
- Authors: Suprunchuk V.E.1
-
Affiliations:
- North Caucasus Federal University
- Issue: No 15 (2023)
- Pages: 1039-1048
- Section: Nanochemistry
- URL: https://journals.rcsi.science/2226-4442/article/view/378537
- DOI: https://doi.org/10.26456/pcascnn/2023.15.1039
- EDN: https://elibrary.ru/SZDUIQ
- ID: 378537
Cite item
Full Text
Abstract
Magnetically controlled transport of drugs with targeted release of molecular cargo expands the possibilities of clinical therapy. This article explores the possibility of creating nanoparticles based on fucoidan modified with magnetite for biomedical purposes. The possibility of immobilizing a modelling fibrinolytic enzyme with a cross-linking agent was studied. The maximum loading of the enzyme is 2.06±0.09% of the mass. The particle size with immobilized alteplase according to scanning electron microscopy was 94.4±24.3 nm, hydrodynamic diameter - 370 nm, zeta potential - -1.66±0.06 mV. The saturation magnetization of the sample is 6 emu/g. To understand the mechanisms of molecular load release, five kinetic models were applied to the results obtained: zero order, Weibull, Hill equation, Higuchi, Korsmeyer-Peppas. The use of mathematical modeling showed that the best model for describing this process is the Korsmeyer-Peppas kinetic equation ( r 2 = 0.97), and the release process is controlled by the Fick diffusion. The resulting biocomposite material is a promising candidate as a nanocarrier for an enzymatic agent.
About the authors
Victoria E. Suprunchuk
North Caucasus Federal University
Email: vsuprunchuk@ncfu.RUS
Stavropol, Russia
References
- Shubayev, V.I. Magnetic nanoparticles for theragnostics / V. I. Shubayev, T. R. Pisanic, S. Jin // Advanced Drug Delivery Reviews. - 2009. - V. 61. - I. 6. - P. 467-477. doi: 10.1016/j.addr.2009.03.007.
- Demin, A.M. Magnetic-responsive doxorubicin-containing materials based on Fe3O4 nanoparticles with a SiO2/PEG shell and study of their effects on cancer cell lines / A.M. Demin, A.V. Vakhrushev, A.G. Pershina et al. // International journal of molecular sciences. - 2022. - V. 23. - I. 16. - Art. № 9093. - 14 p. doi: 10.3390/ijms23169093.
- Li, M. Enhanced synergism of thermo-chemotherapy for liver cancer with magnetothermally responsive nanocarriers / M. Li, W. Bu, J. Ren et al. // Theranostics. - 2018. - V. 8. - I. 3. - P. 693-709. doi: 10.7150/thno.21297.
- Kumar, A. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles / A. Kumar, M. Gupta // Biomaterials. - 2005. - V. 26. - I. 13. - P. 1565-1573. doi: 10.1016/j.biomaterials.2004.05.022.
- Gupta, A.K. Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture / A. K. Gupta, A. S. G. Curtis // Journal of Materials Science: Materials In Medicine. - 2004. - V. 4. - I. 15. - P. 493-496. doi: 10.1023/b:jmsm.0000021126.32934.20.
- Jin, J.O. The therapeutic potential of the anticancer activity of fucoidan: Current advances and hurdles / J.O. Jin, P.S. Chauhan, A.P. Arukha et al. // Marine Drugs. - 2021. - V. 19. - I. 5. - Art. № 265. - 17 p. doi: 10.3390/md19050265.
- Ushakova, N.A. Anticoagulant activity of fucoidans from brown algae / N. A. Ushakova, G. E. Morozevich, N. E. Ustyuzhanina et al. // Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. - 2009.- V. 3. - I. 1. - P. 77-83. doi: 10.1134/S1990750809010119.
- Thuy, T.T.T. Anti-HIV activity of fucoidans from three brown seaweed species / T.T.T. Thuy, B.M. Ly, T.T.T. Van et al. // Carbohydrate Polymers. - 2015. - V. 115. - P. 122-128. doi: 10.1016/J.CARBPOL.2014.08.068.
- Lu, S. Binding mechanisms of polysaccharides adsorbing onto magnetite concentrate surface / S. Lu, Z. Yuan, C. Zhang // Powder Technology. - 2018. - V. 340. - P. 17-25. doi: 10.1016/j.powtec.2018.09.021.
- Ghebouli, R. Amino-fucoidan as a vector for r tPA-induced fibrinolysis in experimental thrombotic events / R. Ghebouli, S. Loyau, M. Maire et al. // Thrombosis and haemostasis. - 2018. - V. 118. - I. 1. - P. 42-53. doi: 10.1160/TH17-02-0132.
- Супрунчук, В.E. Высокоинтенсивная низкочастотная ультразвуковая обработка сульфатированного полисахарида бурых водорослей / В. E. Супрунчук // Журнал Сибирского федерального университета: Химия. - 2021. - T. 14. - №. 4. - С. 582-592. doi: 10.17516/1998-2836-0265.
- Drozdov,A.S. A universal magnetic ferrofluid: Nanomagnetite stable hydrosol with no added dispersants and at neutral pH / A. S. Drozdov, V. Ivanovski, D. Avnir, V.V. Vinogradov // Journal of Colloid and Interface Science. - 2016. - V. 468. - P. 307-312. doi: 10.1016/j.jcis.2016.01.061.
- Супрунчук, В.E. Создание и свойства биокомпозитных наночастиц на основе фукоидана как носителя фибринолитического фермента / В. E. Супрунчук // Известия вузов. Серия "Химия и химическая технология". - 2023. - T. 66. - № 5. - С. 87-95. doi: 10.6060/ivkkt.20236605.6680.
- Kruger, N.J. The Bradford method for protein quantitation / N.J. Kruger // In book: The Protein Protocols Handbook. Springer Protocols Handbooks; ed. by J.M. Walker. - Totowa, New Jersey: Humana Press, 2009.- P. 17-24. doi: 10.1007/978-1-59745-198-7_4.
- Friedrich, R.P. Tissue plasminogen activator binding to superparamagnetic iron oxide nanoparticle-covalent versus adsorptive approach / R. P. Friedrich, J. Zaloga, E. Schreiber et al. // Nanoscale Research Letters. - 2016. - V. 11. - I. 1. - Art. № 297. - 11 p. doi: 10.1186/s11671-016-1521-7.
- Mendyk, A. KinetDS: An open source software for dissolution test data analysis, dissolution technol / A. Mendyk, R. Jachowicz, K. Fijorek et al. // Dissolution Technologies. - 2012. - V. 19. - I. 1. - P. 6-11. doi: 10.14227/DT190112P6.
- KinetDS3.0. data analysis software. - Режим доступа: https://sourceforge.net/projects/kinetds/files/v 3.0/KinetDS3.0_Windows_32.zip/download. - 15.12.2022.
- Anastasova, E.I. Magnetite nanocontainers: Toward injectable highly magnetic materials for targeted drug delivery / E.I. Anastasova, A.Y. Prilepskii, A.F. Fakhardo et al. // ACS Applied Materials & Interfaces.- 2018. - V. 10. - I. 36. - P. 30040-30044. doi: 10.1021/acsami.8b10129.
- Wu, I.Y. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes / I.Y. Wu, S. Bala, N. Škalko-Basnet, M.P. di Cagno // European Journal of Pharmaceutical Sciences. - 2019. - V. 138. - I. 6. - Art. № 105026. - 43 p. doi: 10.1016/j.ejps.2019.105026.
- Vajhadin, F. Glutaraldehyde crosslinked doxorubicin promotes drug delivery efficiency using cobalt ferrite nanoparticles / F. Vajhadin, M. Mazloum-Ardakani, S. Raeisi et al. // Colloids and Surfaces B: Biointerfaces.- 2022. - Art. № 112870. - 25 p. doi: 10.1016/j.colsurfb.2022.112870.
- Shagholani, H. Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application / H. Shagholani, S. M. Ghoreishi, M. Mousazadeh // International Journal of Biological Macromolecules. - 2015. - V. 78. - P. 130-136. doi: 10.1016/j.ijbiomac.2015.02.042.
- Düsenberg, B. Magnetizing polymer particles with a solvent-free single stage process using superparamagnetic iron oxide / B. Düsenberg, P. Groppe, S. Müssig et al. // Polymers. - 2022. - V. 14. - I. 19.- Art. № 4178. - 13 p. doi: 10.3390/polym14194178.
Supplementary files
