MATHEMATICAL MODELING OF FORMATION OF NANOCRYSTALLINE CALCIUM OXALATE UNDER PHYSIOLOGICAL CONDITIONS
- Authors: Golovanova O.A.1, Kiselev V.M.1
-
Affiliations:
- Dostoevsky Omsk State Universit
- Issue: No 15 (2023)
- Pages: 950-961
- Section: Nanochemistry
- URL: https://journals.rcsi.science/2226-4442/article/view/378527
- DOI: https://doi.org/10.26456/pcascnn/2023.15.950
- EDN: https://elibrary.ru/TGHXAF
- ID: 378527
Cite item
Full Text
Abstract
For the first time, a physicochemical model of the formation of poorly soluble compounds in the kidney nephron was developed on the basis of a mathematical description of the ideal displacement reactor. As a result of mathematical modeling, it was found that under normal physiological conditions, the formation of a solid phase is not the dominant process, which explains the absence of crystalline formations in the kidneys in healthy people. An increase in the concentration of precipitate-forming ions, corresponding to certain conditions of the human body, leads to the occurrence of local high supersaturations in certain areas of the nephron, which can lead to the formation of solid phase nuclei, their fixation and further growth. It is shown that the calculations of material balances, flow movements, as well as the concentration profiles of components in the nephron determine the possibility of predicting the behavior of the model system with variations in the parameters and conditions that affect the course of the crystallization process (concentration, fluid flow, hydrodynamic regime, etc.), which will allow developing effective methods for the prevention and treatment of urolithiasis, including the dissolution of already formed aggregates.
Keywords
About the authors
Olga A. Golovanova
Dostoevsky Omsk State Universit
Email: golovanoa2000@mail.RUS
Omsk, Russia
Vladimir M. Kiselev
Dostoevsky Omsk State UniversitOmsk, Russia
References
- Бабский, Е.Б. Физиология человека / Е.Б. Бабский, В.Д. Глебовский, А.Б. Коган и др.; под ред. Г.И. Косицкого. - 3-е изд., перераб. и доп. - М.: Медицина, 1985. - 544 с.
- Young, B. Wheater's functional histology. A text and colour atlas / B. Young, G. O'Dowd, P. Woodford.- 6th ed. - Philadelphia, PA: Churchill Livingstone, 2013. - 464 p.
- Вандер, А. Физиология почек / А. Вандер; пер. с англ. Г.А. Лаписа, под ред. Ю. В. Наточина. - СПб.: Изд-во "Питер", 2000. - 256 с.
- Голованова, О.А. Корреляционные зависимости между фазовым, элементным и аминокислотным составом физиогенных, патогенных ОМА и их синтетических аналогов / О.А. Голованова, С.А. Герк, А.Н. Куриганова, Р.Р. Измайлов // Системы. Методы. Технологии. -2012. - № 4(16). - С. 131-139.
- Вощула, В.И. Мочекаменная болезнь: этиотропное и патогенетическое лечение, профилактика / В.И. Вощула // Рецепт. 2007. № 6(56). - С. 149-159.
- Gualtieri, A.F. Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers / A.F. Gualtieri // Toxicology and Applied Pharmacology. - 2018. - V. 361. - P. 89-98. doi: 10.1016/j.taap.2018.05.012.
- Conti, C. Stability and transformation mechanism of weddellite nanocrystals studied by X-ray diffraction and infrared spectroscopy / C. Conti, L. Brambilla, C. Colombo et al // Physical Chemistry Chemical Physics.- 2010. - V. 12. - I. 43. - P. 14560-14566. doi: 10.1039/C0CP00624F.
- Bazin, D. Hyperoxaluria is related to whewellite and hypercalciuria toweddellite: What happens when crystalline conversionoccurs? / D. Bazin, C. Leroy, F. Tielens et al. // Comptes Rendus Chimie. - 2016. - V. 19. - I. 11-12. - P. 1492-1503. doi: 10.1016/j.crci.2015.12.011.
- Vaitheeswari, S. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites / S. Vaitheeswari, R. Sriram, P. Brindha, G.A. Kurian // International Brazilian Journal of Urology. - 2015. - V. 41. - I. 3. - P. 503-510. doi: 10.1590/S1677-5538.IBJU.2014.0193.
- Abdel-Aal, E.A. Inhibition of nucleation and crystallisation of kidney stone (calcium oxalate monohydrate) using Ammi Visnaga (khella) plant extract / E.A. Abdel-Aal, A.M.K. Yassin, M.F. El-Shahat // International Journal of Nano and Biomaterials. - 2016. - V. 6. - I. 2. - P. 110-126. doi: 10.1504/IJNBM.2016.10000549.
- Okumura, N. Diversity in protein profiles of individual calcium oxalate kidney stones / N. Okumura, M. Tsujihata, C. Momohara et al. // PLOS One.- 2013. - V. 8 - I. 7. - Art. № e68624. - 9 p. doi: 10.1371/journal.pone.0068624.
- Finkielstein, V.A. Strategies for preventing calcium oxalate stones / V.A. Finkielstein, D.S. Goldfarb // Canadian Medical Association Journal. - 2006. - V. 174. - I. 10. - P. 1407-1409. doi: 10.1503/cmaj.051517.
- Голованова, О.А. Изучение нанокристаллических структур оксалатов кальция и кинетики их кристаллизации / О.А. Голованова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 61-69. doi: 10.26456/pcascnn/2022.14.061.
- Дахин, О.Х. Химические реакторы / О.Х. Дахин. - Волгоград: РПК "Политехник", 2012. - 182 с.
- Davis, M.E. Fundamentals of chemical reaction engineering / M.E. Davis, R.J. Davis. 1st ed. - New York: McGraw-Hill Companies, 2002. - 384 p.
- Golovanova, O.A. Thermodynamics and kinetics of calcium oxalate crystallization in the presence of amino acids / O.A. Golovanova, V.V. Korol'kov // Crystallography reports. - 2017. - V. 62. - I. 5 - Р. 787-796. doi: 10.1134/S1063774517050078.
- Кафаров, В.В. Системный анализ процессов химической технологии: массовая кристаллизация / В.В. Кафаров, И.Н. Дорохов, Э.М. Кольцова; отв. ред. Н.М. Жаворонков. - 2-е изд., перераб. и доп. - М.: Изд-во Юрайт, 2018. - 368 с.
- Felmlee, M.A. Mechanistic models describing active renal reabsorption and secretion: a simulation-based study / M.A. Felmlee, R.A. Dave, M.E. Morris // The AAPS Journal. - 2013. - V. 15. - I. 1. - P. 278-287. doi: 10.1208/s12248-012-9437-3.
- Голованова, О.А. Моделирование нуклеации оксалата кальция / О.А. Голованова, В.А. Когут, Е.В. Желяев // Математические структуры и моделирование. - 2003. - Вып. 11. - С. 42-47.
- Evan, A.P. Randall's plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle / A.P. Evan, J.E. Lingeman, F.L. Coe et al. // Journal of Clinical Investigation. - 2003. -V. 111. - I. 5.- P. 607-616. doi: 10.1172/JCI17038.
- Sepe, V. Henle loop basement membrane as initial site for Randall plaque formation / V. Sepe, G. Adamo, A. La Fianza et al. // American Journal of Kidney Diseases. - 2006. - V. 48. - I. 5. - P. 706-711. doi: 10.1053/j.ajkd.2006.07.021.
- Линников, О.Д. Механизм формирования осадка при спонтанной кристаллизации солей из пересыщенных водных растворов / О.Д. Линников // Успехи химии. - 2014. - Т. 83. - № 4. - С. 343-364.
- Nanev, C.N. Evaluation of the critical nucleus size without using interface free energy / C.N. Nanev // Journal of Crystal Growth. - 2020. - V. 535. - Art. № 125521. - 3 p. doi: 10.1016/j.jcrysgro.2020.125521.
- Горичев, И.Г. Анализ кинетических данных растворения оксидов металлов с позиций фрактальной геометрии / И.Г. Горичев, А.Д. Изотов, А.И. Горичев и др. // Журнал физической химии. -1999. - Т. 71.- № 10. - С. 1802-1808.
Supplementary files
