FUNCTIONING FEATURES OF THE GAS SENSOR BASED ON SnO2
- Authors: Ryzhkova D.A.1, Gafner Y.Y.1
-
Affiliations:
- Khakass State University
- Issue: No 15 (2023)
- Pages: 814-822
- Section: Physical and chemical foundations of nanotechnology
- URL: https://journals.rcsi.science/2226-4442/article/view/378514
- DOI: https://doi.org/10.26456/pcascnn/2023.15.814
- EDN: https://elibrary.ru/PXBJUE
- ID: 378514
Cite item
Full Text
Abstract
Every year modern industry increases the number of technological processes using high-risk chemicals. Therefore, for the uninterrupted work of personnel, it is necessary to minimize the possible consequences of leakage of these substances, but for this, first of all, a clear definition of the maximum permissible concentration of a particular hazardous substance in the air is required. In the last decade, nanomaterials of various types have been used as active elements for gas sensors, and gas sensors based on tin oxide have become the most popular among researchers. In this work, typical reactions of the interaction of the surface of a nanocompacted SnO 2 layer with some detectable gases were studied. It is shown that with an increase in the concentration of the analyzed gas due to its chemical absorption, the electrons previously captured by oxygen are released, which leads to an increase in the number of nanoparticles in the conducting state. This feature makes it possible to use the nanocompacted SnO 2 layer for the determination of nitrogen mono- and nitrogen dioxide in the atmosphere.
Keywords
About the authors
Daria A. Ryzhkova
Khakass State UniversityAbakan, Russia
Yury Ya. Gafner
Khakass State University
Email: ygafner@khsu.RUS
Abakan, Russia
References
- Нанотехнологии в электронике - 3.1 / под ред. Ю.А. Чаплыгин. - М.: Техносфера, 2015. - 480 с.
- Wang, C. Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods / C. Wang, X. Chu, M. Wu // Sensors and Actuators B: Chemical. - 2006. - V. 113. - I. 1. - P. 320-323. doi: 10.1016/j.snb.2005.03.011.
- Deshpande, N.G. Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications / N.G. Deshpande, Y. G. Gudage, R. Sharma, J. C. Vyas, J. B. Kim, Y. P. Lee // Sensors and Actuators B: Chemical. - 2009. - V. 138. - I. l. - P. 76-84. doi: 10.1016/j.snb.2009.02.012.
- Robertson, J. Electronic structures of SnO2, GeO2, PdO2, TeO2 and MgF2 / J. Robertson // Journal of Physics C: Solid State Physics. 1979. - V. 12. - № 22. - P. 4767-4776. doi: 10.1088/0022-3719/12/22/018.
- Eicker, H. Untersuchung neuer Meßverfahren mit Metalloxidhalbleitern zur Überwachung von Kohlenoxid- Konzentrationen [ Α study of new measuring techniques with metal oxide semiconductors designed to monitor carbon oxide concentrations] / H. Eicker, Η.J. Kartenberg, Η. Jacob // Technisches Messen. - 1981. - V. 48.- I. JG. - P. 421-430. doi: 10.1524/teme.1981.48.jg.421.
- Kelleter, J. Künstliche nase für gasförmige emissionen aus unvollständiger verbrennung, aufbau und erprobung eines multi-gassensor-system / J. Kelleter. Dissertationsschrift zur Erladung des Doktorgrades am Institut für Angewandte Physik der Justus-Liebig-Universität Gieße: Shaker Verlag, 1997. - 115 p.
- Ruhland, B. Gas-kinetic interactions of nitrous oxides with SnO2 surfaces / B. Ruhland, Th. Becker, G. Müller // Sensors and Actuators B-chemical. - 1998. - V. 50. - I. 1. - P. 85-94. doi: 10.1016/S0925-4005(98)00160-9.
- Hollemann, A.F. Lehrbuch der anorganische chemie / A.F. Hollemann, E. Wilberg, N. Wilberg. - Berlin, Boston: de Gruyer, 1995. - 1480 p. doi: 10.1515/9783110838176.
- Редель, Л.В. Компьютерный анализ сенсорных свойств наноструктурированных SnO2 пленок. 3. Анализ восприимчивости SnO2 сенсора к угарному газу / Л. В. Редель, С. Л. Гафнер // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2017. - Вып. 9. - С. 397-403. doi: 10.26456/pcascnn/2017.9.397.
- Guan, W. Gas-sensing performances of metal oxide nanostructures for detecting dissolved gases: a mini review / W. Guan, N. Tang, K. He, X. Hu, M. Li, K. Li // Frontiers in Chemistry. - 2020. - V. 8. - Art. № 76.- 5 p. doi: 10.3389/fchem.2020.00076.
Supplementary files
