THE FEATURES OF APPLICATION OF EUTECTIC MELTS BASED ON INDIUM AND GALLIUM

Cover Page

Cite item

Full Text

Abstract

In a brief review, the main trends in the use at the present time of eutectic melts based on indium and gallium (EGaIn) are considered. Examples of the use of EGaIn in transistors, capacitors, electrodes, and probe systems (including those in four-probe techniques) are given. The main properties of EGaIn and the spreading of a drop of EGaIn melts are considered, and a detailed scheme of the point-contact four-probe method is given. The main issues discussed in the application of EGaIn in the field of obtaining liquid electrodes, including the formation of gallium oxides, the possibility is revealed of the influence of the spatial environment on the EGaIn droplet and manipulation of microdroplets,. It has been established that among the works of 2022-2023, a large segment is occupied by publications in the field of flexible electronics, intelligent robots, as well as wearable devices (for example, the creation of a metatissue with an antibacterial effect and the ability to be heated with a low energy consumption) and biomedical applications (the development of smart gloves for manipulating gestures, measuring the heart rate of insects).

About the authors

Evgeniya V. Maraeva

Saint Petersburg, Saint Petersburg Electrotechnical University «LETI»

Email: jenvmar@mail.RUS
Saint Petersburg, Russia

Nikita V. Permiakov

Saint Petersburg, Saint Petersburg Electrotechnical University «LETI»

Saint Petersburg, Russia

Vyacheslav A. Moshnikov

Saint Petersburg, Saint Petersburg Electrotechnical University «LETI»

Saint Petersburg, Russia

References

  1. Zhao, Z. Smart eutectic gallium-indium: from properties to applications / Z. Zhao, S. Soni, T. Lee et al. // Advanced Materials. - 2023. - V. 35. - I. 1. - Art. №. 2203391 - 46 p. doi: 10.1002/adma.202203391.
  2. Пермяков, Н.В. Использование жидких зондов на основе эвтектического раствора для исследования проводящих свойств тонких пленок / Н.В. Пермяков // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2021. - Вып. 13. - С. 338-344. doi: 10.26456/pcascnn/2021.13.338.
  3. Permiakov, N. Investigation of the conductive properties of ZnO thin films using liquid probes and creation of a setup using liquid probes EGaIn for studing the conductive properties of thin films / N. Permiakov, E. Maraeva, A. Bobkov et al. // Technologies. - 2023. - V. 11. - I. 1. - P. 26-36. doi: 10.3390/technologies11010026.
  4. Бобков, А.А. Исследование явлений, возникающих при формировании фрактальных микроструктур в слоях поликарбоната, полиметилметакрилата, оксида индия-олова, оксида цинка / А.А. Бобков, В.Ф. Бородзюля, И.А. Ламкин и др. // Физика и химия стекла. - 2019. - Т. 45. - № 3. - С. 288-297. doi: 10.1134/S0132665119010128.
  5. Rothemund, P. Influence of the contact area on the current density across molecular tunneling junctions measured with EGaIn top-electrodes / P. Rothemund, C.M. Bowers, Z. Suo, G.M. Whitesides // Chemistry of Materials. - 2018. - V. 30. - I. 1. - P. 129-137. doi: 10.1021/acs.chemmater.7b03384.
  6. Chiechi, R.C. Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers / R.C. Chiechi, E.A. Weiss, M.D. Dickey, G.M. Whitesides // Angewandte Chemie International Edition. - 2008. - V. 120. - I. 1. - P. 142-144. doi: 10.1002/anie.200703642.
  7. Fassler, A. 3D structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting / A. Fassler, C. Majidi. // Lab on a Chip. - 2013. - V. 13. - I. 22. - P. 4442-4450. doi: 10.1039/C3LC50833A.
  8. Fassler, A. Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics / A. Fassler, C. Majidi // Smart Materials and Structures. - 2013. - V. 22. - № 5. - Art. № 055230. - 8 p. doi: 10.1088/0964-1726/22/5/055023.
  9. Tabatabai, A. Liquid-phase gallium-indium alloy electronics with microcontact printing / A. Tabatabai, A. Fassler, C. Usiak, C. Majidi // Langmuir. - 2013. - V. 29. - I. 20. - P. 6194-6200. doi: 10.1021/la401245d.
  10. Qin, D. Soft lithography for micro-and nanoscale patterning / D. Qin, Y. Xia, G.M. Whitesides // Nature Protocols. - 2010. - V. 5. - I. 3. - P. 491-497. doi: 10.1038/nprot.2009.234.
  11. Niskala, J.R. Tunneling characteristics of Au-alkanedithiol-Au junctions formed via nanotransfer printing (nTP) / J.R. Niskala, W.C. Rice, R.C. Bruce et al. // Journal of the American Chemical Society. - 2012. - V. 134. - I. 29. - P. 12072-12082. doi: 10.1021/ja302602b.
  12. Li, D. Rapidly measuring charge carrier mobility of organic semiconductor films upon a point-contact four-probes method / D. Li, S. Li, W. Lu et al. // IEEE Journal of the Electron Devices Society. - 2018. - V. 7. - P. 303-308. doi: 10.1109/JEDS.2018.2872714.
  13. Yoshimoto, S. Highly anisotropic mobility in solution processed TIPS-pentacene film studied by independently driven four GaIn probes / S. Yoshimoto, K. Takahashi, M. Suzuki et al. // Applied Physics Letters. - 2017. - V. 111. - I. 7. - Art. №. 073301 - 4 p. doi: 10.1063/1.4998949.
  14. Bo, G. Recent progress on liquid metals and their applications / G. Bo, L. Ren, X. Xu et al. //Advances in Physics: X. - 2018. - V. 3. - I. 1. - P. 412-442. doi: 10.1080/23746149.2018.1446359.
  15. Khan, M.R. Giant and switchable surface activity of liquid metal via surface oxidation / M.R. Khan, C.B. Eaker, E.F. Bowden, M.D. Dickey // Proceedings of the National Academy of Sciences. - 2014. - V. 111.- I. 39. - P. 14047-14051. doi: 10.1080/23746149.2018.1446359.
  16. Kuo, P.H. Non-invasive Drosophila ECG recording by using eutectic gallium-indium alloy electrode: a feasible tool for future research on the molecular mechanisms involved in cardiac arrhythmia / P.H. Kuo, T.H. Tzeng, Y.C. Huang et al. // Plos Оne. - 2014. - V. 9. - I. 9. - Art. №. e104543 - 8 p. doi: 10.1371/journal.pone.0104543.
  17. Allioux, F.M. Applications of liquid metals in nanotechnology / F.M. Allioux, M.B. Ghasemian, W. Xie et al. // Nanoscale Horizons.- 2022. - V. 7. - I. 2. - P. 141-167. doi: 10.1039/d1nh00594d.
  18. Soh, E.J. AFM manipulation of EGaIn microdroplets to generate controlled, on-demand contacts on molecular self-assembled monolayers / E.J. Soh, H.P. Astier, D. Daniel et al. // ACS Nano. - 2022. - V. 16. - I. 9. - P. 14370-14378. doi: 10.1021/acsnano.2c04667
  19. Amini, S. Interplay between interfacial energy, contact mechanics, and capillary forces in EGaIn droplets / S. Amini, X. Chen, J.Q.I. Chua et al. // ACS Applied Materials & Interfaces. - 2022. - V. 14. - I. 24.- P. 28074-28084. doi: 10.1021/acsami.2c04043.
  20. Лашкова, Н.А. Способ оценки адгезионной прочности соединения пьезоэлектрических нанокристаллов с подложкой / Н.А. Лашкова, А.И. Максимов, В.А. Мошников. // Нано- и микросистемная техника. - 2019. - T. 21 - №. 2. - С. 73-82. doi: 10.17587/nmst.21.73-82.
  21. Пат. 2654385 Российская Федерация, МПК G01Q60/00 (2010.01), G01Q70/16 (2010.01), B82Y35/00 (2011.01). Измерительный зонд и способ его изготовления / Бородзюля В.Ф., Мошников В.А., Пермяков Н.В.; заявитель и патентообладатель Бородзюля В.Ф., Мошников В.А., Пермяков Н.В.- № 2017114837; заявл. 26.04.2017; опубл. 17.05.2018, Бюл. № 14. - 9 с.
  22. Пат. 2635335 Российская Федерация, МПК G01N 19/04 (2006.01), G01N 27/00 (2006.01). Способ определения адгезионной прочности покрытий к подложке / Лашкова Н.А., Максимов А.И., Алексеев П.А., Мошников В.А.; заявитель и патентообладатель Лашкова Н.А., Максимов А.И., Алексеев П.А., Мошников В.А. - № 2016122810; заявл. 08.06.2016; опубл. 10.11.2017, Бюл. № 31. - 8 с.
  23. Kim, J.H. Effect of surrounding solvents on interfacial behavior of gallium-based liquid metal droplets / J.H. Kim, Y.J. Park, S. Kim et al. // Materials. - 2022. - V. 15. - I. 3. - P. 706-715. doi: 10.3390/ma15030706.
  24. Yu, L. Transportable, endurable, and recoverable liquid metal powders with mechanical sintering conductivity for flexible electronics and electromagnetic interference shielding / L. Yu, X. Qi, Y. Liu et al. // ACS Applied Materials & Interfaces. - 2022 - V. 14. - I. 42. - P. 48150-48160. doi: 10.1021/acsami.2c14837.
  25. Highly conductive, ultra-stretchable liquid metal composites engineered by magnetic field for robotic, wearable electronic, and medical applications. - Режим доступа: www.url: https://www.authorea.com/doi/full/10.22541/au.166177625.58898562. - 11.08.2023.
  26. Dong, J. Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode / J. Dong, Y. Peng, X. Nie, et al. // Advanced Functional Materials. - 2022. - V. 32. - I. 48. - Art. № 2209762. - 12 p. doi: 10.1002/adfm.202209762.
  27. Tao, Y. Liquid metal-based flexible and wearable sensor for functional human-machine interface / Y. Tao, F. Han, C. Shi et al // Micromachines. - 2022. - V. 13. - I. 9. - P. 1429-1443. doi: 10.3390/mi13091429.
  28. Zhao, J. Rapidly reversible discoloration of liquid metal by contact or separation / J. Zhao, H. Li, X. Bi, et al. // Materials Chemistry and Physics. - 2022. - V. 291. - Art. № 126726. - 8 p. doi: 10.1016/j.matchemphys.2022.126726.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).