AMORPHOUS-CRYSTALLINE BORON-CONTAINING COATINGS FORMED BY THE ION-PLASMA

Cover Page

Cite item

Full Text

Abstract

Using the method of high-frequency ion-plasma sputtering (magnetron high-frequency deposition under conditions of ion-plasma assisted using a gas (argon) plasma generator «PINK») on the surface of a high-entropy CoFeCrMnNi alloy of non-equiatomic composition. Boron-containing coatings of the elemental composition Al - Mg - B and Mg - Ti - B with a thickness of 3 μm are formed. Using transmission electron diffraction microscopy, it was found that the coatings are amorphous-crystalline, i.e. contain nanosized 1.5-2 nm islands of the crystalline phase located in an amorphous matrix. It is shown that the coating deposition is accompanied by the formation in the substrate layer (high-entropy alloy) adjacent to the coating of a nanocrystalline structure with a crystallite size of 25-40 nm. At the boundaries of the crystallites, particles of iron boride of the FeB and Fe 3 B compositions are revealed, which indicate the penetration of boron into the substrate. The particle size of iron boride is 5-8 nm.

About the authors

Yury F. Ivanov

Institute of High Current Electronics, Siberian Branch of RAS

Email: yufi55@mail.RUS
Tomsk, Russia

Anatoly A. Klopotov

Tomsk State University of Architecture and Building

Tomsk, Russia

Vladimir V. Shugurov

Institute of High Current Electronics, Siberian Branch of RAS

Tomsk, Russia

Ivan I. Azhazha

Institute of High Current Electronics, Siberian Branch of RAS

Tomsk, Russia

Elizaveta A. Petrikova

Institute of High Current Electronics, Siberian Branch of RAS

Tomsk, Russia

Oleg S. Tolkachev

Institute of High Current Electronics, Siberian Branch of RAS

Tomsk, Russia

Alisa V. Nikonenko

Tomsk State University of Control Systems and Radioelectronics

Tomsk, Russia

References

  1. Balusamy, T. Pack boronizing of AISI H11 tool steel: role of surface mechanical attrition treatment / T. Balusamy, T.S.N. Sankara Narayanan, K. Ravichandran et al. // Vacuum. - 2013. - V. 97. - P. 36-43. doi: 10.1016/j.vacuum.2013.04.006.
  2. Erdogan, A. Boriding temperature effect on micro-abrasion wear resistance of borided tool steel / A. Erdogan // Journal of Tribology. - 2019. - V. 141. - I. 12. - Art. № 121702. - 7 p. doi: 10.1115/1.4044859.
  3. Gok, M.S. Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures / M.S. Gok, A. Erdogan, M. Oge et al. // Surface Coatings Technology - 2017. - V. 328. - P. 54-62. DOI: j.surfcoat.2017.08.008.
  4. Subramanian, C. Development of boron based neutron absorber materials / C. Subramanian, A. K. Suri // Metals and Materials Processing. - 2004 - V. 16. - I. 1. - P. 39-52.
  5. Fu, X. The Advancement of neutron shielding materials for the storage of spent nuclear fuel / X. Fu, Z. Ji, W. Lin et. al. // Science and Technology of Nuclear Installations. - 2021. - V. 2021. - Art. № 5541047. - 13 p. doi: 10.1155/2021/5541047.
  6. Иванов, А.А. Ускорительный источник нейтронов для бор-нейтронозахватной терапии / А.А. Иванов, А.Н. Смирнов, С.Ю. Таскаев и др. // Успехи физических наук. - 2022. - Т. 192. - Вып. 8. - С. 891-912. doi: 10.3367/UFNr.2021.02.038940.
  7. Liu, D. Effects of boron content on microstructure and wear properties of FeCoCrNiBx high-entropy alloy coating by laser cladding / D. Liu, J. Zhao, Y. Li et al. // Applied Sciences. - 2020. - V. 10. - I. 1. - Art. № 49.- 11 p. doi: 10.3390/app10010049.
  8. Lindner, T. Surface hardening of FCC phase high-entropy alloy system by powder-pack boriding / T. Lindner, M. Löbel, B. Sattler et al. // Surface and Coatings Technology. - 2019. - V. 371. - P. 389-394. doi: 10.1016/j.surfcoat.2018.10.017.
  9. Nakajo, H. Boronizing of CoCrFeMnNi high-entropy alloys using spark plasma sintering / H. Nakajo, A. Nishimoto // Journal of Manufacturing and Materials Processing. - 2022. - V. 6. - I. 2. - Art. № 29. - 9 p. doi: 10.3390/jmmp6020029.
  10. Cengiz, S. The effect of Hf addition on the boronizing and siliciding behavior of CoCrFeNi high entropy alloys / S. Cengiz, M. Thuvander // Materials. - 2022. - V. 15. - I. 6. - Art. № 2282. - 17 p. DOI: https://doi.org/10.3390/ma15062282.
  11. Hou, J. Deformation behavior and plastic instability of boronized Al0.25CocrFeNi high-entropy alloys / J. Hou, J. Fan, H. Yang et al. // International Journal of Minerals, Metallurgy and Materials. - 2020. - V. 27.- I. 10. - P. 1363-1370. doi: 10.1007/s12613-020-1967-6.
  12. Seol, J. Boron doped ultrastrong and ductile high-entropy alloys / J.B. Seol, B.J. Wung, Z.M. Li et al. // Acta Materialia. - 2018. - V. 151. - P. 366-376. doi: 10.1016/j.actamat.2018.04.004.
  13. Gromov, V.E. High-entropy alloys: structure and properties / V.E. Gromov, Yu.F. Ivanov, K.A. Osintsev et al. - Moscow: RuScience, 2022. - 204 p.
  14. Devyatkov, V.N. Equipment and processes of vacuum electron-ion plasma surface engineering / V.N. Devyatkov, Yu.F. Ivanov, O.V. Krysina et al. // Vacuum. - 2017. - V. 143. - P. 464-472. doi: 10.1016/j.vacuum.2017.04.016.
  15. Nikitin, P.Yu. Energy-effective AlMgB14 production by self-propagating high-temperature synthesis (SHS) using the chemical furnace as a source of heat energy / P.Yu. Nikitin, A.E. Matveev, I.A. Zhukov // Ceramics International. - 2021. -V. 47. - I. 15. - P. 21698-21704. doi: 10.1016/j.ceramint.2021.04.183.
  16. Nikitin, P. Experimental and theoretical study of ultra-Hard AlMgB14-TiB2 composites: structure, hardness and self-lubricity / P. Nikitin, I. Zhukov, D. Tkachev et. al. // Materials. - 2022. - V. 15. - I. 23. - Art. № 8450. - 12 p. doi: 10.3390/ma15238450.
  17. Witusiewicz, V.T. The Al-B-Nb-Ti system V. Thermodynamic description of the ternary system Al-B-Ti / V.T. Witusiewicz, A.A. Boundary, U. Hecht et al. //Journal of Alloys and Compounds. -2009. - V. 474. - I. 1-2. P. 86-104. doi: 10.1016/j.jallcom.2008.06.128.
  18. Raghavan, V. Al-B-Mg (aluminum-boron-magnesium) / V. Raghavan // Journal of Phase Equilibria and Diffusion. -2010. - V. 31. - I. 3. - P.272-273. doi: 10.1007/s11669-010-9675-y.
  19. Higashi, I. Boron-rich crystals in Al-M-B (M=Li, Be, Mg) systems grown from high-temperature aluminium solutions / I. Higashi, M. Kobayashi, S. Okada et al. // Journal of Crystal Growth. - 1993. - V. 128.- I. 1-4. - Part 2. - P. 1113-1119. doi: 10.1016/S0022-0248(07)80108-4.
  20. Kubaschewski, O. The Al-B-Co System (aluminum-boron-cobalt) / O. Kubaschewski // Bulletin of Alloy Phase Diagrams. - 1989. - V. 10. - I. 5. - P. 533-536. doi: 10.1007/BF02882410.
  21. Jeitschko, W. The crystal structure of Fe2AlB2 / W. Jeitschko // Acta Crystallography - 1969. - V. 25. - I. 1. - P. 163-165. doi: 10.1107/S0567740869001944.
  22. Chisholm, M.F. Fe16Al14B2 phase in Fe-Al alloys / M.F. Chisholm, G. Duscher, L.X. Pang, Kumar K.S. Kumar // Philosophical Magazine A. - 2000. - V. 80 - I. 11. - P. 2737-2745. doi: 10.1080/01418610008216502
  23. Чабан, Н.Ф. Тройные системы Cr-Al-B и Mn-Al-B / Н.Ф. Чабан, Ю.Б. Кузьма // Известия Академии наук СССР. Серия Неорганические материалы. - 1973. - Т. 9. - С. 1908-1911.
  24. Кузьма, Ю.Б. Кристаллическая структура Cr3AlB4 / Ю.Б. Кузьма, П.И. Крипякевич, Н.Ф. Чабан // Материалы Академии наук Украины. Серия А. - 1972. - № 12. - С. 1118-1121. ()
  25. Becher, H.J. Über das ternäre Borid Mn2AlB4 / H.J. Becher, K. Krogmann, E. Peisker // Zeitschrift für Anorganische und Allgemeine Chemie. -1966. - V. 344. - I. 3-4. - P. 140-147. doi: 10.1002/zaac.19663440304 (In German).
  26. Чабан, Н.Ф. Изотермические сечения систем (Co, Ni) - (Al, Si) / Н.Ф. Чабан, Ю.Б. Кузьма // Неорганические материалы. - 1973. - Т. 9. - С. 1886-1889.
  27. Higashi, I. Crystal growth of borides and carbides of transition metals from molten aluminium solutions / I. Higashi, Y. Takahashi, T. Atoda // Journal of Crystal Growth. - 1976. - V. 33. - I. 2. - P. 207-211. doi: 10.1016/0022-0248(76)90044-0.
  28. Чабан, Н.Ф. Изотермические сечения в системах (Co, Ni) - (Al, Si) - B / Н.Ф. Чабан, Ю.Б. Кузьма // Известия Академии наук СССР. Серия Неорганические материалы. - 1973. - Т. 9. - С. 2136-2140.
  29. Post, B. Transition Metal Diborides / B. Post, F.W. Glaser, D. Moskowitz // Acta Metallurgica. - 1954.- V. 2. - I. 1. - P. 20-25. doi: 10.1016/0001-6160(54)90090-5.
  30. Ottavi, L. Phase equilibria and solidification of Fe-Ti-B alloys in the region close to Fe-TiB2 / L. Ottavi, C. Saint-Yours, N. Valignant et al. // Zeitschrift für Metallkunde. - 1992. - V. 83. - I. 2. - P. 80-83. doi: 10.1515/ijmr-1992-830203.
  31. Клопотов, А.А. Структурно-фазовые состояния поверхностного слоя сплава Al-Si после электронно-ионно-плазменной обработки / А.А. Клопотов, Ю.Ф. Иванов, Е.А. Петрикова и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2014. - Вып. 6. - С. 162-170.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).