MODEL OF A THREE-QUBIT CLUSTER IN A THERMAL BATH

Cover Page

Cite item

Full Text

Abstract

This work studies a mathematical model of a quantum cluster consisting of three qubits and being in thermal equilibrium with the environment. The effective Hamiltonian is invariant under permutations of qubits and consists of two parts. The first part is similar to the Heisenberg XYZ-model with internal two-qubit interaction, while the second includes three-qubit interaction with the thermostat. Such a quantum system admits a fully analytical investigation and is considered in the context of mathematical modeling of quantum metamaterials, in which nanoclusters are elementary structural units with the strong internal interaction of qubits and the relatively weak coupling with the environment. For the Hamiltonian, we construct an orthonormal basis of eigenvectors, which includes the maximally entangled W -state. We also obtain the density operator of the cluster state in explicit form, and study the temperature dependences of the thermodynamic characteristics of the cluster: the partition function, entropy, and free energy. It is shown that the conditions of thermal equilibrium in this quantum system are satisfied at temperatures from 0,2 K to microkelvins, which correspond to the operating range of modern quantum logic elements and quantum simulators.

About the authors

Eduardo Andre

Tver State University

Tver, Russia)Agostinho Neto University (Angola

Alexander Nikolaevich Tsirulev

Tver State University

Tver, Russia

References

  1. Boudreault, C. Universal quantum computation with symmetric qubit clusters coupled to an environment / C. Boudreault, H. Eleuch, M. Hilke, R. MacKenzie // Physical Review A. - 2022. - V. 106. - I. 6. - P. 062610-1-062610-23. doi: 10.1103/PhysRevA.106.062610.
  2. Климов, В.В. Управление излучением элементарных квантовых систем с помощью метаматериалов и нанометачастиц / В.В. Климов // Уcпехи физических наук. - 2021. - Т. 191. - Вып. 10. - С. 1044-1076. doi: 10.3367/UFNr.2021.01.038910.
  3. Jung, P. Progress in superconducting metamaterials / P. Jung, A.V. Ustinov, S.M. Anlage // Superconductor Science and Technology. - 2014. - V. 27. - № 7. - Art. № 073001. - 13 p. doi: 10.1088/0953-2048/27/7/073001.
  4. Forrester, D.M. Whispering galleries and the control of artificial atoms / D.M. Forrester, F.V. Kusmartsev // Scientific Reports. - 2016. - V. 6. - Art. № 25084. - 8 p. doi: 10.1038/srep25084.
  5. Chitambar, E. Quantum resource theories / E. Chitambar, G. Gour // Reviews of Modern Physics. - 2019.- V. 91. - I. 2. - P. 025001-1-025001-48. doi: 10.1103/RevModPhys.91.025001.
  6. Rakhmanov, A.L. Quantum metamaterials: Electromagnetic waves in a Josephson qubit line / A.L. Rakhmanov, A.M. Zagoskin, S. Savel'ev, F. Nori // Physical Review B. - 2008. - V. 77. - I. 14.- P. 144507-1-144507-7. doi: 10.1103/PhysRevB.77.144507.
  7. Андре, Э. Моделирование запутанных состояний в кластерах кубитов / Э. Андре, А. Н. Цирулев // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - № 14. - С. 342-351. - doi: 10.26456/pcascnn/2022.14.342. - EDN AIUTRI.
  8. Tsirulev, A.N. A geometric view on quantum tensor networks / A.N. Tsirulev // European Physical Journal Web of Conferences. - 2020. - V. 226. - Art. № 02022. - 4 p. doi: 10.1051/epjconf/202022602022.
  9. Nikonov, V.V. Pauli basis formalism in quantum computations / V.V. Nikonov, A.N. Tsirulev // Mathematical modelling and geometry. - 2020. - V. 8. - № 3. - P. 1-14. doi: 10.26456/mmg/2020-831.
  10. Takeda, K. Quantum tomography of an entangled three-qubit state in silicon / K. Takeda, A. Noiri, T. Nakajima et al. // Nature Nanotechnology. - 2021. - V. 16. - P. 965-969. doi: 10.1038/s41565-021-00925-0.
  11. Menke, T. Demonstration of tunable three-body interactions between superconducting qubits / T. Menke, W.P. Banner, T.R. Bergamaschi et al. // Physical Review Letters. - 2022. - V. 129. - I. 22. - P. 220501-1-220501-6. doi: 10.1103/PhysRevLett.129.220501.
  12. Kim, M. Quantum-Ising Hamiltonian programming in trio, quartet, and sextet qubit systems / M. Kim, Y. Song, J. Kim, J. Ahn // PRX Quantum. - 2020. - V. 1 - I. 2. - P. 020323-1-020323-9. doi: 10.1103/PRXQuantum.1.020323.
  13. Briegel, H.J. Persistent entanglement in arrays of interacting particles / H.J. Briegel, R. Raussendorf // Physical Review Letters. - 2001. - V. 86. - I. 5. - P. 910-915. doi: 10.1103/PhysRevLett.86.910.
  14. McCoy B.M. Advanced statistical mechanics, International series of monographs on physics, Oxford, Oxford University Press, 2010, 640 p.
  15. Deçordi, G.L. Two coupled qubits interacting with a thermal bath: A comparative study of different models / G.L. Deçordi, A. Vidiella-Barranco // Optics Communications. - 2017. - V. 387. - P. 366-376. doi: 10.1016/j.optcom.2016.10.017.
  16. Cassidy, A.M. Threshold for chaos and thermalization in one-dimensional mean-field bose-hubbard model / A.M. Cassidy, D. Mason, V. Dunjko, M. Olshanii // Physical Review Letters. - 2009. - V. 102. - I.2.- P. 025302-1-025302-4. doi: 10.1103/PhysRevLett.102.025302.
  17. Rigol, M. Thermalization and its mechanism for generic isolated quantum systems / M. Rigol, V. Dunjko, M. Olshanii // Nature. - 2008. - V. 452. - P. 854-858. doi: 10.1038/nature06838.
  18. Волович, И.В. О термализации квантовых состояний / И.В. Волович, О.В. Иноземцев // Труды МИАН РАН. - 2021. - Т. 313. - С. 285-295. doi: 10.4213/tm4169.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).