PECULIARITIES OF THE MICROSTRUCTURE AND PROPERTIES OF THIN SPHEROLITIC PZT FILMS FORMED BY A TWO-STAGE RADIO-FREQUENCY MAGNETRON DEPOSITION METHOD

Cover Page

Cite item

Full Text

Abstract

The paper presents the results of experimental studies of the microstructure and piezoelectric properties of thin lead zirconate-titanate films characterized by either an island structure of radially radiant spherulites located in a low-temperature pyrochlore matrix or a block single-phase spherulitic structure with different linear block sizes. Changing the size of the blocks within 10-50 µm was achieved by varying the distance from the target to the substrate in the range of 30-70 mm, leading to a change in the heating temperature of the substrate in the radio-frequency magnetron sputtering of a ceramic target during film deposition on a «cold» platinized silicon substrate. The temperature of subsequent annealing for the crystallization of the perovskite phase was 550°C for island films and 580°C for single-phase films. Scanning electron microscopy methods have revealed anomalous dependences of the rotation of the growth axis with the growth of the linear dimensions of spherulites, reaching a value of 1,2 deg/μm, and other microstructural parameters of thin films. The observed phenomena were caused by lateral mechanical stresses arising during the solid-state transformation from the pyrochlore phase to the perovskite phase, accompanied by a change in the density of the films. At tensile stresses of the order of the elastic limit, this led to the appearance of intra-block high-angle boundaries. The behavior of lateral polarization was studied by the method of force microscopy of the piezoelectric response and it was shown that tensile mechanical stresses in spherulites lead to the orientation of the lateral polarization vector in the radial direction.

About the authors

Mikhail V. Staritsyn

NRC «Kurchatov institute» - CRISM «Prometey»

Saint Petersburg, Russia

Dmitry A. Kiselev

NUST MISIS

Moscow, Russia

Vladimir P. Pronin

Herzen University

Saint Petersburg, Russia

Artemy N. Krushelnitsky

Herzen University

Saint Petersburg, Russia

Stanislav V. Senkevich

Herzen University

Saint Petersburg, Russia

Evgeny Yu. Kaptelov

Ioffe Institute

Igor P. Pronin

Ioffe Institute

Email: petrovich@mail.ioffe.RUS

References

  1. Mikolajick, T. Next generation ferroelectric materials for semiconductor process integration and their applications / T. Mikolajick, S. Slesazeck, H. Mulaosmanovic et al. // Journal of Applied Physics. - 2021. - V. 129. - I. 10. - Art. № 100901. - 21 p. doi: 10.1063/5.0037617.
  2. Wall, J.M. Sputtering process of ScxAl1-xN thin films for ferroelectric applications / J.M. Wall, F. Yan // Coatings. - 2023. - V. 13. - I. 1. - Art. № 54. - 18 p. doi: 10.3390/coatings13010054.
  3. Naito, K. The ferroelectric orthorhombic phase formation of Hf0.5Zr0.5O2 thin films on (-201) β-Ga2O3 substrate by atomic layer deposition / K. Naito, K. Yamaguchi, T. Yoshimura, N. Fujimura // Japanese Journal of Applied Physics. - 2023. - V. 62. - № SM. - P. SM1018-1-SM1018-5. doi: 10.35848/1347-4065/ace917.
  4. Zhang, H. Engineering of electromechanical oxides by symmetry breaking / H. Zhang, M. Vasiljevic, A. Bergne et al. // Advanced Materials Interfaces. - 2023. - V. 10. - I. 18. - Art. № 2300083. - 22 p. doi: 10.1002/admi.202300083.
  5. Izyumskaya, N. Processing, structure, properties, and applications of PZT thin films / N. Izyumskaya, Y.-I. Alivov, S.-J. Cho et al. // Critical Reviews in Solid State and Materials Sciences. - 2007. - V. 32. - I. 3-4. - P. 111-202. doi: 10.1080/10408430701707347.
  6. Bretos, I. Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microelecrtonic devices / I. Bretos, R. Jiménez, M. Tomczyk et al. // Scientific Reports. - 2016. - V. 6. - Art. № 20143. - 14 p. doi: 10.1038/srep20143.
  7. Song, L. Toward low-temperature processing of lead zirconate titanate thin films: advances, strategies, and applications / L. Song, S. Glinsek, E. Defay // Applied Physics Reviews. - 2021. - V. 8. - I. 4. - Art. № 041315. - 37 p. doi: 10.1063/5.0054004.
  8. Ma, Y. Synthesis, microstructure and properties of magnetron sputtered lead zirconate titanate (PZT) thin film / Y. Ma, J. Song, X. Wang et al. // Coatings. - 2021. - V. 11. - I. 8. - Art. № 944. - 22 p. doi: 10.3390/coatings11080944.
  9. Елшин, А.С. Нелинейно-оптическая диагностика поликристаллических тонких плёнок цирконата-титаната свинца / А.С. Елшин, И.П. Пронин, С.В. Сенкевич, Е.Д. Мишина // Письма в журнал технической физики. - 2020. - Т. 46. - Вып. 8. - С. 32-35. doi: 10.21883/PJTF.2020.08.49306.18142.
  10. Изменение структуры субмикронных пленок ЦТС при тонком варьировании состава в области морфотропной фазовой границы / М. В. Старицын, М. Л. Федосеев, Е. Ю. Каптелов [и др.] // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2021. - № 13. - С. 400-410. - doi: 10.26456/pcascnn/2021.13.400. - EDN QPOSEP.
  11. Kolosov, V.Yu. Transmission electron microscopy studies of the specific structure of crystals formed by phase transition in iron oxide amorphous films / V.Yu. Kolosov, A.R. Thölén // Acta Materialia. - 2000. - V. 48. - I. 8. - P. 1829-1840. doi: 10.1016/S1359-6454(99)00471-1.
  12. Shtukenberg, A.G. Spherulites / A.G. Shtukenberg, Y.O. Punin, E. Gunn, B. Kahr // Chemical Reviews. - 2012. - V. 112. - I. 3. - P. 1805-1838. doi: 10.1021/cr200297f.
  13. Sun, W. Growth mechanism and microstructures of Cu2O/PVP spherulites / W. Sun, W. Zhou // Royal Society of Chemistry Advances. - 2022. - V. 12. - I. 31. - P. 20022-20028. doi: 10.1039/d2ra03302j.
  14. Lutjes, N.R. Spherulitic and rotational crystal growth of Quartz thin films / N.R. Lutjes, S. Zhou, J. Antoja-Lleonart et al. // Scientific Reports - 2021. - V. 11. - I. 1. - Art. № 14888. - 12 p. doi: 10.1038/s41598-021-94147-y.
  15. Musterman, E.J. Curved lattices of crystals formed in glass / E.J. Musterman, V. Dierolf, H. Jain // International Journal of Applied Glass Science. - 2022. - V. 13. - I. 3. - P. 402-419. doi: 10.1111/ijag.16574.
  16. Старицын, М.В. Микроструктура сферолитовых тонких пленок цирконата-титаната свинца / М.В. Старицын, В.П. Пронин, И.И. Хинич и др. // Физика твердого тела. - 2023. - Т. 65. - Вып. 8. - С. 1368-1374. doi: 10.21883/FTT.2023.08.56155.140.
  17. Старицын, М.В. Сегнетоэлектрические свойства тонких пленок цирконата-титаната свинца, полученных методом высокочастотного магнетронного распыления, в области морфотропной фазовой границы / М.В. Старицын, М.Л. Федосеев, Д.А. Киселев и др. // Физика твердого тела. - 2023. - Т. 65. - Вып. 2. - С. 296-301. doi: 10.21883/FTT.2023.02.54305.531.
  18. Nazeer, H. Compositional dependence of the Young's modulus and piezoelectric coefficient of (110)-oriented pulsed laser deposited PZT thin films / H. Nazeer, M.D. Nguyen, Ö.S. Sukas et al. // Journal of Microelectromechanical Systems. - 2015. - V. 24. - I. 1. - P. 166-173. doi: 10.1109/JMEMS.2014.2323476.
  19. Yagnamurthy, I. Mechanical and ferroelectric behavior of PZT-based thin films / I. Yagnamurthy, I. Chasiotis, J. Lambros et al. // Journal of Microelectromechanical Systems. - 2011. - V. 20. - I. 6. - P. 1250-1258. doi: 10.1109/JMEMS.2011.2167666.
  20. Тентилова, И.Ю. Образование микропор в пленках цирконата-титаната свинца / И.Ю. Тентилова, Е.Ю. Каптелов, И.П. Пронин, В.Л. Уголков // Неорганические материалы. - 2012. - Т. 48. - Вып. 11. - С. 1269-1273.
  21. Afanasjev, V.P. Polarization and self-polarization in thin PbZr1-xTixO3 (PZT) films / V.P. Afanasjev, A.A. Petrov, I.P. Pronin et al. // Journal of Physics: Condensed Matter. - 2001. - V. 13. - № 39. - P. 8755-8763. doi: 10.1088/0953-8984/13/39/304.
  22. Пронин, И.П. Вклад механических напряжений в самополяризацию тонких сегнетоэлектрических пленок / И.П. Пронин, Е.Ю. Каптелов, А.В. Гольцев, В.П. Афанасьев // Физика твердого тела. - 2003. - Т. 45. - Вып. 9. - С. 1685-1690.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).