TEMPERATURE DEPENDENCE OF Cu:SnO2 FILM CONDUCTIVITY IN AIR MEDIUM

Cover Page

Cite item

Full Text

Abstract

Temperature conductivity studies of films based on Cu:SnO 2 made by magnetron sputtering of the mixed target CuO/SnO 2 have been carried out. Temperature conductivity dependencies were substantially nonlinear. It was found that the local conductivity minimum was observed near the temperature of 330°C. To explain the results, a mathematical model is proposed of oxygen adsorption in various forms on the surface of wide-bandgap semiconductors. It was assumed that oxygen particle adsorption resulted in energy levels of the acceptor type localized near the surface of the semiconductor. The simulation carried out within the proposed model showed qualitative and quantitative consistency of the calculation results and experimental data of the temperature dependence of conductivity of the formed gas-sensitive Cu:SnO 2 layers in oxygen-containing atmosphere. An analysis of experimental temperature dependence showed that the local conductivity minimum is due to the process of dissociation of oxygen particles adsorbed in molecular form. The desorption energies of each form of adsorbed oxygen and the depth of their surface acceptor level are assessed.

About the authors

Nikita A. Klychkov

Saratov State University

Email: nklychkov@mail.RUS
Saratov, Russia

Viacheslav V. Simakov

Saratov State University

Saratov, Russia

Ilya V. Sinev

Saratov State University

Saratov, Russia

References

  1. Влияние добавок оксидов меди и цинка на электрические и газочувствительные свойства композитных слоёв диоксида олова / Н. А. Клычков, В. В. Симаков, И. В. Синев, Д. А. Шикунов // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - № 14. - С. 632-638. - doi: 10.26456/pcascnn/2022.14.632. - EDN JXDJPI.
  2. Динамика отклика сенсора на основе наноструктурированного слоя диоксида олова при воздействии паров изопропанола / Н. А. Клычков, В. В. Симаков, И. В. Синев, Д. А. Тимошенко // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2021. - № 13. - С. 708-716. - doi: 10.26456/pcascnn/2021.13.708. - EDN DSQHFG.
  3. Oberhüttinger, C. On the temperature dependence of the resistive and surface ionisation response of SnO2 gas sensing layers / С. Oberhüttinger, A. Hackner, G. Müller, M. Stutzmann // Sensors and Actuators B: Chemical. - 2011. - V. 156. - I. 2. - P. 563-571. doi: 10.1016/j.snb.2011.01.069.
  4. Ma, Y.J. Low-temperature transport properties of individual SnO2 nanowires / Y.J. Ma, F. Zhou, L. Lu, Z. Zhang // Solid State Communications. - 2004. - V. 130. - I. 5. - P. 313-316. doi: 10.1016/j.ssc.2004.02.013.
  5. Ramarajan, R. Substrate temperature dependent physical properties of spray deposited antimony-doped SnO2 thin films / R. Ramarajan, M. Kovendhan, K. Thangaraju, D.P. Joseph // Thin Solid Films. - 2020. - V. 704.- Art. № 137988. - 10 p. doi: 10.1016/j.tsf.2020.137988.
  6. Slater, B. Dissociation of O2 on the reduced SnO2 (110) surface / B. Slater, C.R.A. Catlow, D.E. Williams, A.M. Stoneham // Chemical Communications. - 2000. - I. 14. - P. 1235-1236. doi: 10.1039/b002039g.
  7. Gurlo, A. Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen / A. Gurlo // ChemPhysChem. - 2006. - V. 7. - I. 10. - P. 2041-2052. doi: 10.1002/cphc.200600292.
  8. Tsujita,W. Gas sensor network for air-pollution monitoring / W. Tsujita, A. Yoshino, H. Ishida, T. Moriizumi // Sensors and Actuators B: Chemical. - 2005. - V. 110. - I. 2. - P. 304-311. doi: 10.1016/j.snb.2005.02.008.
  9. Simakov, V. Gas identification by quantitative analysis of conductivity-vs-concentration dependence for SnO2 sensors / V. Simakov, A. Voroshilov, A. Grebennikov et al. // Sensors and Actuators B: Chemical. - 2009.- V. 137. - I. 2. - P. 456-461. doi: 10.1016/j.snb.2009.01.005.
  10. Singh, G. Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol / G. Singh, R.C. Singh // Sensors and Actuators B: Chemical. - 2019.- V. 282. - P. 373-383. doi: 10.1016/j.snb.2018.11.086.
  11. Staerz, A. Current state of knowledge on the metal oxide-based gas sensing mechanism / A. Staerz, U. Weimar, N. Barsan // Sensors and Actuators B: Chemical. - 2022. - V. 358. - Art. № 131531. - 18 p. doi: 10.1016/j.snb.2022.131531.
  12. Hübner, M. Influence of oxygen backgrounds on hydrogen sensing with SnO2 nanomaterials / M. Hübner, R.G. Pavelko, N. Barsan, U. Weimar // Sensors and Actuators B: Chemical. - 2011. - V. 154. - I. 2. - P. 264-269. doi: 10.1016/j.snb.2010.01.049.
  13. Симаков, В.В. Неаддитивное влияние паров воды и освещения на проводимость пленки диоксида олова при комнатной температуре / В.В. Симаков, И.В. Синёв, С.Б. Вениг // Известия высших учебных заведений. Прикладная нелинейная динамика. - 2018. - Т. 26. - Вып. 6. - С. 48-58. doi: 10.18500/0869-6632-2018-26-6-48-58.
  14. Oviedo, J. First-principles study of the interaction of oxygen with the SnO2 (110) surface / J. Oviedo, M.J. Gillan // Surface Science. - 2001. - V. 490. - I. 3. - P. 221-236. doi: 10.1016/S0039-6028(01)01372-3.
  15. Кисин, В.В. Влияние адсорбции кислорода на проводимость тонких пленок оксида олова / В.В. Кисин, В.В. Сысоев, C.A. Ворошилов, В.В. Симаков // Физика и техника полупроводников. - 2000. - Т. 34. - Вып. 3. - С. 314-317.
  16. Barsan, N. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report / N. Barsan, M. Schweizer-Berberich, W. Göpel // Fresenius' Journal of Analytical Chemistry. - 1999. - V. 365.- I. 4. - P. 287-304. doi: 10.1007/s002160051490.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).