GRAPHITE OXIDE: PECULIARITIES OF INVESTIGATION OF THIS MATERIAL BY PHYSICAL METHODS

Cover Page

Cite item

Full Text

Abstract

It is shown by physical methods that the preliminary preparation of samples affects the structure and properties of graphite oxide and partially reduced graphite oxide. The graphite oxide drying technique as the last synthesis stage determines its morphology and structural properties. At drying by sublimation method, the state of graphite oxide in aqueous suspension before the beginning of the process of self-ordering of its sheets is fixed, the data of X-ray diffraction analysis testifies its X-ray amorphous state, the dried graphite oxide appearance is a light yellow powder. Drying of graphite oxide aqueous suspensions at temperatures above room temperature is accompanied by the ordering of the graphite oxide structure under the action of the surface tension and Van der Waals forces with the dark brown film formation. It is shown by scanning and transmission microscopy methods that the method of separation of partially reduced graphite oxide from glass substrates, on which the product is dried, can lead to the formation of wrinkled or roll-shaped structures. When graphite oxide is examined by transmission electron microscopy, even a short exposure to ultrasound (used in the conventional method of depositing the material on a copper grid prior to examination) results in wrinkling and partial curling of the edges of graphite oxide nanoparticles. Mechanical grinding of graphite oxide leads to disordered graphite oxide structure and to the interplanar spacing increase.

About the authors

Natalia V. Alemasova

L.M. Litvinenko Institute of Physical Organic and Coal Chemistry

Email: alemasova.nv@gmail.com

Daria I. Bugorskaya

L.M. Litvinenko Institute of Physical Organic and Coal Chemistry

Valeriy V. Burkhovetskii

Galkin Donetsk Institute for Physics and Engineering

Galina K. Volkova

Galkin Donetsk Institute for Physics and Engineering

Valentina A. Glazunova

Galkin Donetsk Institute for Physics and Engineering

Michael Yu. Zelenskii

L.M. Litvinenko Institute of Physical Organic and Coal Chemistry

Michael V. Savoskin

L.M. Litvinenko Institute of Physical Organic and Coal Chemistry

References

  1. Jiříčková, A. Synthesis and applications of graphene oxide: rewiev / A. Jiříčková, O. Jankovský, Z. Sofer, D. Sedmidubský // Materials. - 2022. - V. 15. - I. 3. - P. 920-941. doi: 10.3390/ma15030920.
  2. ГОСТ ISO/TS 80004-3-2014. Нанотехнологии. Часть 3. Нанообъекты углеродные. Термины и определения; введ. 01.01.2016. - М.: Стандартинформ, 2015. - V, 9 с.
  3. ПНСТ 500-2020/ISO/TS 80004-13:2017. Нанотехнологии. Часть 13. Графен и двухмерные (2D) материалы на его основе. Термины и определения; введ. 01.01.2021. - М.: Стандартинформ, 2017. - V, 25 с.
  4. ГОСТ ISO/TS 80004-6-2016. Нанотехнологии. Часть 6. Характеристики нанообъектов и методы их определения. Термины и определения; введ. 01.07.2017. - М.: Стандартинформ, 2016. - VI, 28 с.
  5. ГОСТ 34684-2020. Наноматериалы. Нанотрубки углеродные одностенные. Технические требования и методы испытаний; введ. 01.09.2021. - М.: Стандартинформ, 2021. - III, 11 с.
  6. Алемасова, Н.В. Влияние ультразвукa на структуру восстановленного тиомочевиной оксида графита / Н.В. Алемасова, С.Р. Сухова, В.В. Кравченко и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2020. - Вып. 12. - С. 765-774. doi: 10.26456/pcascnn/2020.12.765.
  7. Papaianina, O.S. Graphite oxide - stages of formation and a new view on its structure / O.S. Papaianina, M.V. Savoskin, A.N. Vdovichenko et al. // Theoretical and Experimental Chemistry. - 2013. - V. 49. - I. 2. - P. 88-95. doi: 10.1002/abio.370040210.
  8. Bannov, A.G. Role of exposure time in graphite oxide synthesis / A.G. Bannov, O.V. Nikityonok, M.V. Popov, E.A. Maksimovskii // Materials Today: Proceedings. - 2020. - V. 31. - I. 3. - P. 499-501. doi: 10.1016/j.matpr.2020.05.777.
  9. Kigozi, M. Synthesis and characterization of graphene oxide from locally mined graphite flakes and its supercapacitor applications / M. Kigozi, R.K. Koech, O. Kingsley et al. // Results in Materials. - 2020. - V. 7. - Art. № 100113. - 12 p. doi: 10.1016/j.rinma.2020.100113.
  10. Vo, T.K. Facile synthesis of graphite oxide/MIL-101(Cr) hybrid composites for enhanced adsorption performance towards industrial toxic dyes / T.K. Vo, T.P. Trinh, V.C. Nguyen, J. Kim // Journal of Industrial and Engineering Chemistry. - 2021. - V. 95. - P. 224-234. doi: 10.1016/j.jiec.2020.12.023.
  11. Kim, D.W. Preparation of a graphene oxide/faujasite composite adsorbent / D.W. Kim, H. Han, H. Kim et al. // Microporous and Mesoporous Materials. - 2018. - V. 268. - P. 243-250. doi: 10.1016/j.micromeso.2018.04.034.
  12. Gurzęda, B. Synthesis of graphite oxide by electrochemical oxidation in aqueous perchloric acid / B. Gurzęda, P. Florczak, M. Kempiński et al. // Carbon. - 2016. - V. 100. - P. 540-545. doi: 10.1016/J.CARBON.2016.01.044.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).