Investigation of the effect of titanium and zirconium oxides on the strength characteristics of nanoscale hydroxyapatite

Cover Page

Cite item

Full Text

Abstract

The article discusses the possibility of dispersion strengthening of nanostructured hydroxyapatite synthesized by precipitation from solution introducing reinforcing additives of non-stoichiometric titanium oxide and zirconium dioxide. The reinforced composite material: hydroxyapatite - non-stoichiometric titanium oxide - zirconium dioxide was obtained by mechanochemical synthesis of hydroxyapatite with doping components followed by annealing at 1000°C. The initial components and synthesized samples were certified using modern physicochemical methods of analysis: X-ray phase analysis, differential thermal analysis, scanning electron microscopy, surface area and porosity analysis, dispersion analysis. The influence of the qualitative and quantitative composition of the composite on the sintering processes and strength characteristics of the studied samples in a wide temperature range of 25-1200°C is shown. It has been experimentally established that the most promising system for developing biocomposites based on it is hydroxyapatite - 15% non-stoichiometric titanium oxide - 5% zirconium dioxide. Composite materials of this composition have a dense, uniform, strong structure with a high degree of crystallinity and a developed surface. They seem to be promising materials for further research with the aim of introducing it into medical practice.

About the authors

Kirill I. Sabanin

Ural Federal University named after the first President of Russia B.N. Yeltsin

4th year student, Department of Experimental Physics

Vladimir M. Skachkov

Institute of Solid State Chemistry of the Ural Branch of RAS

Email: skachkov@ihim.uran.ru
Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes Chemistry

Irina S. Medyankina

Institute of Solid State Chemistry of the Ural Branch of RAS

Researcher, Laboratory of Promising and Functional Materials for Chemical Current Source

Ekaterina A. Bogdanova

Institute of Solid State Chemistry of the Ural Branch of RAS; JSC «Giredmet»

Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes Chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS; Leading Researcher, Laboratory of Electrochemical Devices for Hydrogen Energy, JSC Giredmet

Nail A. Sabirzyanov

Institute of Solid State Chemistry of the Ural Branch of RAS

Dr. Sc., Chief Researcher, Head of the Laboratory of Heterogeneous Processes Chemistry

References

  1. Adhikara, G. Bovine hydroxyapatite for bone tissue engineering: preparation, characterization, challenges, and future perspectives/ G. Adhikara, A.P. Maharani, A. Puspitasari et al. // European Polymer Journal. - 2024. - V. 214. - Art. № 113171. - 12 p. doi: 10.1016/j.eurpolymj.2024.113171.
  2. Pilliar, R.M. Porous calcium polyphosphate scaffolds for bone substitute applications - in vitro characterization / R.M. Pilliar, M.J. Filiaggi, J.D. Wells et al. // Biomaterials. - 2001. - V. 22. - I. 9. - P. 963-972. doi: 10.1016/S0142-9612(00)00261-1.
  3. Khalid, H. 4 - Basics of hydroxyapatite-structure, synthesis, properties, and clinical applications / H. Khalid, A.A. Chaudhry // Handbook of Ionic Substituted Hydroxyapatites; ed. by A.S. Khan, A.A. Chaudhry. In: Woodhead Publishing Series in Biomaterials. - Cambridge: Woodhead Publishing, 2020. - P. 85-115. doi: 10.1016/B978-0-08-102834-6.00004-5.
  4. Câmara, G.I.F. Biocomposite based on nanoscale calcium phosphate and collagen from Nile tilapia (Oreochromis niloticus) skin: properties and morphological features / G.I.F. Câmara, M. do L.L.R. Menezes, N.F. Vasconcelos et al. // Materials Letters. - 2020. - V. 279. - Art. № 128441. - 4 p. doi: 10.1016/j.matlet.2020.128441.
  5. Ofudje, E.A. Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications / E.A. Ofudje, A. Rajendran, A.I. Adeogun et al. // Advanced Powder Technology. - 2018. - V. 29. - I. 1. - P. 1-8. doi: 10.1016/j.apt.2017.09.008.
  6. Ramesh, S. Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications / S. Ramesh, Z.Z. Loo, C.Y. Tan et al. // Ceramics International. - 2018. - V. 44. - I. 9. - P. 10525-10530. doi: 10.1016/j.ceramint.2018.03.072.
  7. Баринов, С.М. Биокерамика на основе фосфатов кальция / С.М. Баринов, В.С. Комлев. - М.: Наука, 2006. - 204 с.
  8. Zhou, H. Nanoscale hydroxyapatite particles for bone tissue engineering / H. Zhou, J. Lee // Acta Biomaterialia. - 2011. - V. 7. - I. 7. - P. 2769-2781. doi: 10.1016/j.actbio.2011.03.019.
  9. Wang, H.X. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process / H.X. Wang, S.K. Guan, X. Wang et al. // Acta Biomaterialia - 2010. - V. 6. - I. 5. - P. 1743-1748. doi: 10.1016/j.actbio.2009.12.009.
  10. John, K.S. 2 - Mechanical biocompatibility of dental materials. Biocompatibility of dental biomaterials / K.S. John // Biocompatibility of Dental Biomaterials; ed. by R. Shelton. In: Woodhead Publishing Series in Biomaterials. - Cambridge: Woodhead Publishing, 2017. - P. 9-21. doi: 10.1016/B978-0-08-100884-3.00002-3.
  11. Placido, F. Titanium dioxide coatings for medical devices / F. Placido, A. McLean, A.A. Ogwu, W. Ademosu // In: Surgical Tools and Medical Devices; ed. by M.J. Jackson, W. Ahmed. - Cham: Springer, 2016. - pp. 81-91. doi: 10.1007/978-3-319-33489-9_3.
  12. Rempel, S.V. Impact of titanium monoxide stoichiometry and heat treatment on the properties of TiOy/HAp nanocomposite / S.V. Rempel, D.A. Eselevich, E.Yu. Gerasimov, A.A. Valeeva // Journal of Alloys and Compounds. - 2019. - V. 800. - P. 412-418. doi: 10.1016/j.jallcom.2019.06.057.
  13. Farzin, A.Comparative evaluation of biocompatibility of dense nanostructured and microstructured Hydroxyapatite/Titania composites / A. Farzin, M. Ahmadian, M.H. Fathi // Materials Science and Engineering: C. - 2013. - V. 33. - I. 4. - P. 2251-2257. doi: 10.1016/j.msec.2013.01.053.
  14. Khalajabadi, S.Z. In vitro biodegradation, electrochemical corrosion evaluations and mechanical properties of an Mg/HA/TiO2 nanocomposite for biomedical applications / S.Z. Khalajabadi, N. Ahmad, S. Izman et al. // Journal of Alloys and Compounds. - 2017. - V. 696. - P. 768-781. doi: 10.1016/j.jallcom.2016.11.106.
  15. He, Y. Microstructure evolution, electrochemical properties and in-vitro properties of Ti-Nb-Zr based biocomposite by hydroxyapatite bioceramic / Y. He, Y. Zhang, Y. Jiang et al. // Journal of Alloys and Compounds. - 2018. - V. 764. - P. 987-1002, doi: 10.1016/j.jallcom.2018.06.132.
  16. Prasad, V.J.S.N. Silver-doped ZrO2-TiO2 nanocomposite coatings on 316L stainless steel for enhanced corrosion resistance and bio applications / V.J.S.N. Prasad, F. Mayanglambam, P.N.V.V.L. Pramila Rani, P. Dobbidi // Surface and Coatings Technology. - 2024. - V. 493. - Part 1. - Art. № 131203. - 14 p. doi: 10.1016/j.surfcoat.2024.131203.
  17. Samanipour, F. Electrophoretic enhanced micro arc oxidation of ZrO2-HAp-TiO2 nanostructured porous layers / F. Samanipour, M.R. Bayati, H.R. Zargar et al. // Journal of Alloys and Compounds. - 2011. - V. 509. - I. 38. - P. 9351-9355. doi: 10.1016/j.jallcom.2011.07.035.
  18. Naji, Q.K. Investigations of structure and properties of layered bioceramic HA/TiO2 and ZrO2/TiO2 coatings on Ti-6Al-7Nb alloy by micro-arc oxidation / Q.K. Naji, J.M. Salman, N.M. Dawood // Materials Today Proceedings. - 2022. - V. 61. - Part 3. - P. 786-793. doi: 10.1016/j.matpr.2021.09.038.
  19. Богданова, Е.А. Получение биокомозитов на основе наноразмерного гидроксиапатита с соединениями титана / Е.А. Богданова, В.М. Скачков, К.В. Нефедова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 521-530. doi: 10.26456/pcascnn/2022.14.521.
  20. Богданова, Е.А. Влияние армирующих добавок на процессы спекания и упрочнения наноразмерного гидроксиапатита / Е.А. Богданова, И.М. Гиниятуллин, Д.И. Переверзев, В.М. Разгуляева // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2019. - Вып. 11. - С. 548-554. doi: 10.26456/pcascnn/2019.11.548.
  21. Пат. 2406693 Российская Федерация, МПК C01B25/32. Способ получения суспензии гидроксиапатита / Сабирзянов Н.А., Богданова Е.А., Хонина Т.Г.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела УрО РАН. - № 2008140563/15; заявл. 13.10.08; опубл. 20.12.10, Бюл. № 35. - 5 с.
  22. Пат. 2652193 Российская Федерация, МПК C01B25/32. Способ получения суспензии апатита / Богданова Е.А., Сабирзянов Н.А., Скачков В.М.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела УрО РАН. - № 2017113484; заявл. 19.04.17; опубл. 25.04.18, Бюл. № 12. - 5 с.
  23. Bogdanova, E.A. Formation of nanodimensional structures in precipitated hydroxyapatite by fluorine substitution / E.A. Bogdanova, V.М. Skachkov, I.S. Medyankina et al. // SN Applied Sciences. - 2020. - V. 2. - I. 9. - Art. № 1565. - 7 p. doi: 10.1007/s42452-020-03388-5.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).